USER MANUAL

Building Acoustics Software BZ-7228

for use with Hand-held Analyzer Types 2250 and 2270

BE 1799 – 18 English

Building Acoustics Software BZ-7228

for use with Hand-held Analyzer Types 2250 and 2270

Valid for all hardware versions and from software version 4.7

User Manual

Health and Safety Considerations

This apparatus has been designed and tested in accordance with IEC/EN 61010-1 and ANSI/UL 61010-1 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use. This manual contains information and warnings which must be followed to ensure safe operation and to retain the apparatus in safe condition.

Safety Symbols and Signal Words Used

The apparatus will be marked with this symbol when it is important that you refer to the associated danger or warning statement given in this manual

The manual uses this symbol when a danger or warning statement is applicable

Hazardous Voltage/Electricity. Both the apparatus and manual use this symbol when there is a risk for shock or electrocution

Hot Surface. This manual will use this symbol when there is a risk for burning or scolding

Earth (Ground) Terminal. The apparatus will be marked with this symbol when applicable

Protective Conductor Terminal. The apparatus will be marked with this symbol when applicable

Alternating Current. The apparatus will be marked with this symbol when applicable

Danger

Signals an imminent hazardous situation, which, if not avoided, will result in death or serious injury

Warning

Signals a possibly hazardous situation, which, if not avoided, will result in death or serious injury

Caution

Signals a hazardous situation, which, if not avoided, could result in minor or moderate injury or damage to the apparatus

Notice

Signals a situation or practice that requires attention, but does not directly result in personal injury if ignored

Risks and Hazards

Explosion Hazards

Danger: The apparatus is not designed to be used in potentially explosive environments. It should not be operated in the presence of flammable liquids or gases

Electrical Hazards

Warning: Any adjustment, maintenance and repair of the open apparatus under voltage must be avoided as far as possible and, if unavoidable, must be carried out only by trained service

Caution:

Switch off all power to equipment before connecting or disconnecting their digital interface. Failure to do so could damage the equipment

Mechanical Hazards

Caution:

Whenever it is likely that the correct function or operating safety of the apparatus has been impaired, it must be made inoperative and be secured against unintended operation

Waste Handling

Brüel & Kjær complies with the EU's Waste Electrical and Electronic Equipment (WEEE) Directive, which issues the following waste handling instructions:

- Do not dispose of electronic equipment or batteries as unsorted municipal waste
- It is your responsibility to contribute to a clean and healthy environment by using the appropriate local return and collection systems
- Hazardous substances in electronic equipment or batteries may have detrimental effects on the environment and human health
- The symbol shown to the left indicates that separate collection systems must be used for any discarded equipment or batteries marked with that symbol
- Waste electrical and electronic equipment or batteries may be returned to your local Brüel & Kjær representative or to Brüel & Kjær Headquarters for disposal

Brüel & Kjær has made every effort to ensure the accuracy of the information contained in this document. No responsibility is accepted for any errors or omissions herein. It is the responsibility of the user to ensure compliance with any legal or statutory requirements in the country of use. Data may change, as well as legislation, therefore you are advised to obtain copies of the most recently issued applicable regulations, standards and guidelines.

All descriptions, illustrations and any other information relating to the product are made by way of general description, are approximate only and for the general guidance and information of the user. They cannot be construed to imply representation or warranty as to their accuracy, currency or completeness and are not intended to form the basis of any contract.

The information in this document does not constitute a warranty, representation or guarantee concerning the suitability or performance of the product.

Brüel & Kjær shall not be liable for any loss whether direct, indirect, incidental or consequential arising from the use of or reliance upon any of the content of this document, regardless of whether such content has been accurate or complete. Brüel & Kjær will not pay any damages whether for loss or injury, punitive or otherwise, because of use of or reliance upon any of the content in this document.

Brüel & Kjær and all other trademarks, service marks, trade names, logos and product names are the property of Brüel & Kjær or a third-party company. Nothing in this document may be construed as granting, by implication, or otherwise any license or right to use any of the trademarks without a prior written permission of Brüel & Kjær or the owner of such trademark.

© Brüel & Kjær. All rights reserved.

Brüel & Kjær Sound & Vibration Measurement A/S DK-2850 Nærum · Denmark

For service and support, contact your nearest Brüel & Kjær Customer Care support team:

Headquarters: info@bksv.com, +45 7741 2400

China (Beijing): +86 10 59935811

France: service.fr@bksv.com, +33 1 69 90 71 02 **Germany:** bkservice.de@bksv.com, +49 421 17 87 0

Italy: it.info@bksv.com, +39 02 5768061

Japan: info_jp@bksv.com, +81 3 6810 3500

North & South America: bkservice@bksv.com,

+1 770 209 6907

Spain: servicio.tecnico@bksv.com, +34 91 659 08 20 UK & Ireland: ukservice@bksv.com, +44 1223 389800

Go to www.bksv.com/contact for contact information to our other global offices.

Contents

CHAPTER 1		
Introductio	on	
1.1	How to Use this Manual	1
CHAPTER 2		
Building Ad	coustics Measurements	3
2.1	Building Acoustics Defined	3
2.2	Measurement Procedure	6
CHAPTER 3		
System Ov	erview	15
CHAPTER 4		
Building Ad	coustics Software	17
4.1	What is a Building Acoustics Project?	17
4.2	Navigating Building Acoustics Software	17
4.3	Things To Remember	24
4.4	Level Measurements (L1, L2 and B2)	25
4.5	Reverberation Time Measurements (T2)	41
4.6	Low-frequency Measurements	49
4.7	2-channel Measurements (Type 2270 Only)	53
4.8	Displaying Results	58
4.9	Quality Indicators	61
4.10	Creating a New Project	64
4.11	Reusing Data from an Existing Project	64
4.12	Annotations and Signal Recording	65
4.13	Exporting, Post-processing and Reporting	68
CHAPTER 5		
Specification	ons	69

APPENDIX A

Setup Pa	ameters	
A.1	Input (For Type 2270 Only)	82
A.2	Input	83
A.3	Standard	84
A.4	Frequency Range	84
A.5		
A.6		86
A.7		87
A.8		88
A.9	Generator for T2	89
A.1		90
A.1		90
APPENDIX	В	
Measure	ment Parameters	93
B.1	Building Acoustics Standards	93
INDEV		07

Chapter 1

Introduction

Building Acoustics Software BZ-7228 is an application package for Hand-held Analyzer Types 2250 and 2270. BZ-7228 is a single-channel application that can be used on Type 2250 or Type 2270. With 2-channel Option BZ-7229, Type 2270 (only) becomes a dual-channel building acoustics tool.

If you are newcomer to the world of Type 2250 or 2270, you are strongly advised to study *Handheld Analyzer Types 2250 and 2270 – User Manual* (BE 1713) before reading this manual because it will enable a better understanding of the platform concept and how the BZ-7228 application package fits into the portfolio. You will also become familiar with some terms used in this manual that apply to analyzers in general.

This manual provides instructions for:

- Setting up your hand-held analyzer for building acoustic measurements
- Measuring building acoustics
- · Looking at your results

This manual assumes that you are familiar with the concepts of measuring sound using a microphone and some form of sound level meter/analyzer.

1.1 How to Use this Manual

1.1.1 Conventions Used in this Manual

"Analyzer" refers to Type 2250 or Type 2270 if the description is valid for both types.

Instructions and descriptions that refer to the analyzer pushbuttons are shown with the pushbutton icons as seen on the analyzer. See Chapter 2 for a list of pushbutton icons and their functions.

Icons, Buttons and Tabs Used on the Screen

Indicated by bold type face (for example, tap Main Menu icon).

Parameter Values, Text and Variables

Parameter values, instructions, descriptions appearing on the screen and variables are indicated by italics (for example, *Internal Disk*).

Menu, Parameters and Screen Navigation

Indicated by bold type face (for example, **Setup** > **Frequency Settings** > **BB Peak**).

Keyboard Entries

Keyboard entries and combinations are indicated by bold type face within angle brackets (for example, **<Ctrl+b>** means you should press the **Ctrl** button and **b** button at the same time).

1.1.2 Beginners

Before you read the rest of this manual, read Brüel & Kjær's primer on Measuring Sound. This will give you a basic idea of acoustic measurements. It can be found on the www.bksv.com website, by typing 'Primer' in the search window. The website also contains lots of other information you might find useful.

Further information is available in the online help installed on the analyzer.

1.1.3 Experienced Users of Acoustic Measurement Equipment

The manual is designed so that you do not have to read all of it to be able to use the analyzer. It is built around the most frequently used operations, these are as follows:

- Building Acoustics Measurements (Chapter 2)
- System Connections (Chapter 3)
- Building Acoustics Software (Chapter 4)
- Specifications (Chapter 5)
- Setup Parameters (Appendix A)
- Measurement Parameters (Appendix B)

However, it is recommended that you read the entire manual for appropriate procedures on how to use the analyzer to obtain accurate sound level measurement results.

Chapter 2

Building Acoustics Measurements

This chapter describes how to perform building acoustics measurements using:

- Type 2250 or Type 2270 with Building Acoustics Software BZ-7228 (single channel)
- Type 2270 Building Acoustics Software BZ-7228 and 2-channel Option BZ-7229

2.1 Building Acoustics Defined

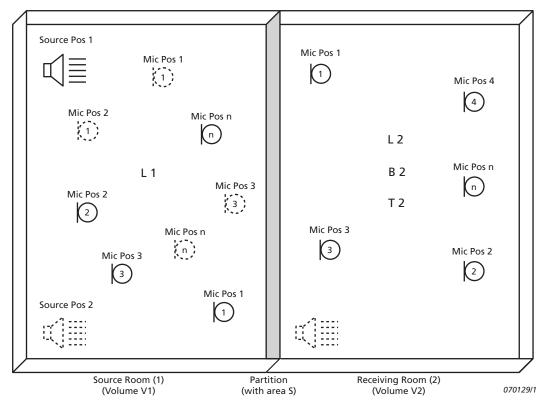
Building Acoustics is the assessment of sound insulation in buildings. The assessment is based on measured 1/1-octave or 1/3-octave spectra within the 50 - 5000 Hz range.

Measurements may be serial (one frequency band at a time) or parallel (all bands simultaneously).

'Room acoustics' is the assessment of sound quality inside a room and outside the scope of this document. It is described in *Hand-held Analyzer Types 2250 and 2270 – User Manual*, Chapter 14 – Reverberation Time Software (Optional Module).

2.1.1 Tasks

There are three kinds of building acoustics measurement tasks:


- 1) **Airborne Sound Insulation** is the sound insulation from one room (the source room) to another room (the receiving room).
- 2) **Façade Sound Insulation** is airborne sound insulation with the 'source room' being the space outside a building, and the receiving room being inside the building.
- 3) **Impact Sound Level** is the sound level in the receiving room from a standardized tapping machine in the source room.

These tasks will be described in more detail in section 2.2.

Reverberation time is also used in the calculation of building acoustics. Determining reverberation time has two purposes: determining the absorption coefficient for building materials and checking the reverberation time according to building regulations, for example, in stairwells, classrooms and work spaces.

To aid understanding, an illustration on how to set up airborne sound insulation measurements has been provided. This will help you visualize what we will be talking about in the next sections and will help to introduce you to some of the terms used, see Fig. 2.1.

Fig. 2.1 Typical setup for airborne sound insulation measurement

L1 refers to the sound level measurements made in Source Room (1) – these are used in airborne and façade sound insulation calculations.

L2 refers to the sound level measurements made in Receiving Room (2) – these are used in airborne, façade and impact sound insulation calculations.

B2 refers to the background sound level measurements in Receiving Room (2) – these are used for background level corrections in airborne, façade and impact sound insulation calculations.

T2 refers to the reverberation time measurements made in Receiving Room (2) – these are used in airborne, façade and impact sound insulation calculations

Please note:

The annotations denote where the measurement was taken. For example, L1 measurements are taken in Source Room (1) hence the L1 annotation, and the L2, B2 and T2 measurements are taken in Receiving Room (2) hence the L2, B2 and T2 annotations.

In practice, when making measurements 'in the field' there are many considerations to be taken into account while making building acoustic measurements. For example, is the room empty or furnished, large or small, regularly or irregularly shaped, all these things affect the reflection of sound within the room and change the sound field in the room.

This can cause variations in sound pressure level within the source room, so measurements are normally made at several points in the room. You might choose, for example, two sound source positions and three microphone positions, see Fig. 2.1. The resulting averaged spectrum is used in the sound insulation calculations.

Similarly, a series of measurements are made at different positions in the receiving room to allow for sound pressure variations. The resulting averaged spectrum is used in the impact or sound insulation calculations.

The sound insulation calculations are then made, using combinations of the above values, according to a wide range of international standards, see section 2.2.1 and section 4.2.1.

In some standards, the L1 and L2 levels are not averaged for each room separately, irrespective of sound source. Instead each level measurement is identified as belonging to one particular source. Averaging is made in two steps:

- Averaging L1-L2 for each source
- Averaging L1-L2 contributions

2.1.2 Partitions

Sound insulation refers to a specific 'separating' part of a building (for example, a wall, floor or window). Partition is the common term used in all tasks.

2.1.3 Field versus Laboratory Measurements

Field Measurements

Measurements in the field are performed in situ on partitions of buildings. The results are used to document conformance to building regulations. In field measurements, sound and vibration propagate not just via the partition under investigation, but also via other partitions, structures and leaks. This propagation is called 'flanking' transmission.

Laboratory Measurements

Measurements in the laboratory are made on building elements such as wall panels or windows mounted in special test rooms, designed and tested to prevent 'flanking'. The measurements follow uniform and strict procedures, and the measuring equipment is usually permanently installed. The results are used by manufacturers to document the performance of their products.

2.1.4 Correction for Background Noise

If the background noise level B2 comes within 15 dB of the receiving room level L2, it starts affecting the measured L2 level. Depending on the standard, correction is made to L2 for the influence of the background noise level. The correction varies depending on the level difference L2-B2. When the background noise level comes too close to the receiving room level, a fixed correction to L2 is made and the measurement results are marked to indicate that a correction has been made.

2.1.5 Spatial Averaging

The averaging of levels in a room may be done using a moving microphone, for example, mounted on a rotating boom such as Type 3923, or by averaging the levels measured in a number of positions.

The average reverberation time in a room is calculated from the average result for a number of positions either by averaging the reverberation times or by averaging the decay curves and then calculating the reverberation time for the average decay (ensemble averaging).

2.2 Measurement Procedure

2.2.1 Standards

Hand-held Analyzer Type 2250/2270 with BZ-7228 software (or Type 2270 with BZ-7228 and BZ-7229 software) can measure and calculate results according to a wide range of national and international standards, which include:

- ISO (ISO 16283 and ISO 140) international
- SS Sweden
- DIN Germany
- ÖNORM Austria
- BS UK
- BREW England/Wales
- Sia Switzerland
- UNI Italy
- NF France
- NBE Spain
- CTE Spain
- NEN Netherlands
- NEN'06 Netherlands
- ASTM USA

Further details of these standards can be found in Appendix B, Table B.1.

For practical reasons, instructions will be given for the ISO standard, which in many cases forms the basis of national standards.

2.2.2 Airborne Sound Insulation

Airborne Sound Insulation is calculated from the $L_{\rm Zeq}$ spectra for the average source room level, L1, average receiving room level, L2, receiving room background noise level, B2 and average reverberation time, T2, see Fig. 2.1.

The sound source should be an omnidirectional loudspeaker, emitting either pink or white noise depending on measurement conditions.

Source Room (L1) Measurements

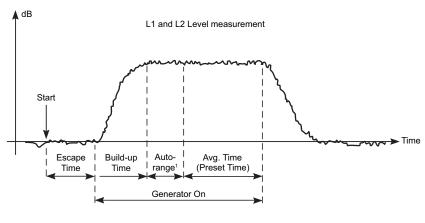
Place the sound source in the source room to make the L1 sound level measurements, see Fig. 2.1.

Several measurement points should be used for the sound source and the microphone. You should choose two sound source positions and a minimum of five microphone positions.

The source room level, L1, is the resulting average for positions 1 to n. It is used in the sound insulation calculations.

Receiving Room (L2) Measurements

L2 level measurements are made in the receiving room, see Fig. 2.1.


As with L1, make a series of measurements at different positions for each sound source position in the source room, in order to allow for sound pressure variations. The resulting averaged spectrum is used in the calculations.

Typical L1 and L2 Measurement Cycle

The different stages of a typical L1 and L2 measurement cycle are illustrated in Fig. 2.2 and described below:

- 1) Set the **Escape Time** (tap **Main Menu** > **Setup** > **Generator L1 and L2** > **Escape Time** and enter the time), which allows you to vacate the measurement room, and press **Start/Pause** on the analyzer.
- 2) The noise generator is switched on and the analyzer waits for the chosen **Build-up Time** (tap **Main Menu** > **Setup** > **Generator L1 and L2** > **Build-up Time** and enter the time) to allow for the sound field to reach a steady state.
- 3) If you are using Type 2250 (or Type 2270 for a single-channel measurement), the analyzer starts to measure from this point.
 - However, if you are using Type 2270 (with BZ-7229), it is possible to measure L1 and L2 simultaneously by connecting two microphones to your Type 2270.
 - If this is the case, the analyzer goes into *Autorange* (if this setup option is chosen), where the detected level is used to choose the most convenient range, either *High Range* or *Low Range*.
- Please note:
- See *Hand-held Analyzer Types 2250 and 2270 User Manual*, Chapter 2, for details about mounting the microphones.
- 4) The measured spectra are averaged by the analyzer in the chosen averaging time, Avg. Time.
- 5) The noise generator is switched off.

Fig. 2.2Different stages of a typical L1 and L2 measurement cycle

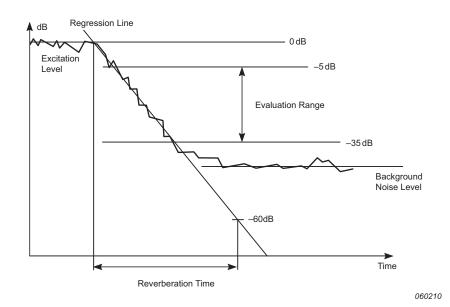
¹ Only applicable to dual-channel measurements with Type 2270

960629/1

Receiving Room (B2) Measurements

Background level measurements, B2, are made in the receiving room and can be used for correcting L2 levels automatically, if this setup option is chosen. Ideally, B2 should be measured consecutively with L2 at the same measurement positions.

Typical B2 Measurement Cycle


The different stages of a typical B2 measurement cycle are described below:

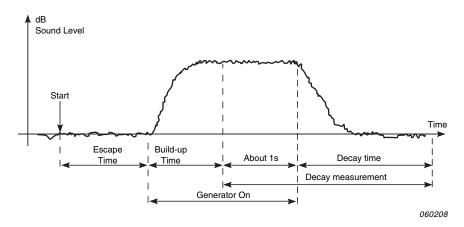
- 1) Set the **Escape Time** (tap **Main Menu** > **Setup** > **Generator L1 and L2** > **Escape Time** and enter the time), which allows you to vacate the measurement room, and press **Start/Pause** on the analyzer.
- 2) The measured spectra are averaged by the analyzer in the chosen averaging time, Avg. Time.

Reverberation Time (T2) Measurements

Reverberation time, T2, is the decay time for sound in a room after the excitation stops. It is the time for a 60 dB drop in level, but the decay is usually evaluated over a 20 or 30 dB drop, using the measurements within these ranges to make a regression line, which is then extrapolated to the 60 dB range, see Fig. 2.3.

Fig. 2.3Definition of Reverberation Time (T2)

Reverberation time used in building acoustics is labelled either T20 or T30, depending on which of the two evaluation ranges were used.


All measurements are made in the receiving room. As with L1, L2 and B2 measurements, a series of measurements are made at different positions in the room to allow for spatial variations of reverberation decay.

A reverberation time measurement is made using the 'interrupted noise' or 'impulse excitation' methods, as follows:

Interrupted Noise Method

- 1) Set the **Escape Time** (tap **Main Menu** > **Setup** > **Generator T2** > **Escape Time** and enter the time), which allows you to vacate the measurement room, and press **Start/Pause** on the analyzer.
- 2) The noise generator is switched on and the analyzer waits for the chosen **Build-up Time** (tap **Main Menu** > **Setup** > **Generator T2** > **Build-up Time** and enter the time) to allow for the sound field to reach a steady state.

Fig. 2.4Typical reverberation time (T2) measurement cycle for interrupted noise method

- 3) The decay measurement starts. The level for the first second, or so, is used to identify the excitation sound level as the 0 dB reference level.
- 4) The noise generator is switched off and the sound level begins to decay.
- 5) The decay measurement ends when only the background noise level is measured (automatically detected by the analyzer).
- 6) Steps 2) to 5) are automatically repeated a chosen number of times and the measured decays are averaged together to reduce the uncertainty of the measurement.
- 7) The reverberation time spectra T20 and T30 are calculated and displayed on the screen.

Impulsive Excitation Method

- 1) Set the **Trigger Level** (tap **Main Menu Setup** > **Setup** > **Measurement Control T2** > **Trigger Level** and enter the level)
- 2) Press the **Start/Pause** pushbutton, and the analyzer waits for the level to exceed the trigger level (the traffic light will flash green every second).
- 3) The impulse excitation (for example, a starting pistol is fired or a balloon is burst) is made.

Caution:

The use of hearing protection is highly recommended.

- 4) The impulse measurement is started 1 s before the level exceeds the trigger level.
- 5) The impulse measurement stops after the analyzer detects the background noise level again (automatically measured by the analyzer).
- 6) The analyzer performs backward integration of the impulse measurement (according to the Schroeder method).
- 7) The reverberation time spectra T20 and T30 are calculated and displayed on the screen.

The measurement is in octaves or 1/3-octaves in parallel over a selectable frequency range. In each frequency band, the decay is sampled 200 times each second.

In theory, the resulting decay will be equivalent to the average of a large number of decays using the interrupted noise method. Therefore, the decay will be smooth using a single shot.

2.2.3 Façade Sound Insulation

Façade sound insulation is airborne sound insulation with the 'source room' being the space outside a building and the receiving room being inside the building, see Fig. 2.5.

The loudspeaker sound source should be positioned at an angle of 45° to the centre of the partition (or wall) and generating pink or white noise.

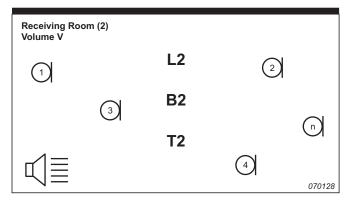
The outdoor level, L1, is the resulting average for positions 1 to n, placed at the partition, and is used in the sound insulation calculations.

Façade sound insulation is then calculated from the L_{eq} spectrum for the average outdoor level, L1, average receiving room level, L2, average receiving room background noise level, B2 and average reverberation time, T2.

The B2 and T2 measurements are performed in a similar way to those described previously in Section 2.2.2.

Traffic Noise

Owing to the varying character of traffic noise, L1 and L2 need to be measured simultaneously for each set of L1/L2 positions, and the L1-L2 differences are then averaged. For this reason you will need a dual-channel Type 2270 to perform this task.


Fig. 2.5
Typical setup for façade sound insulation measurement

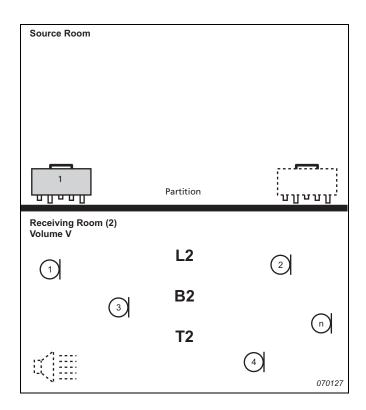
L1

Partition with area S

2.2.4 Impact Sound Level

Impact Sound Level is the sound level in the receiving room from a standardized tapping machine in the source room, see Fig. 2.6.

The sound source for L2 is a standardized tapping machine (for example, Brüel & Kjær's Type 3207), which is placed in the source room to simulate footsteps. The sound source used for T2 is interrupted noise or impulsive noise.

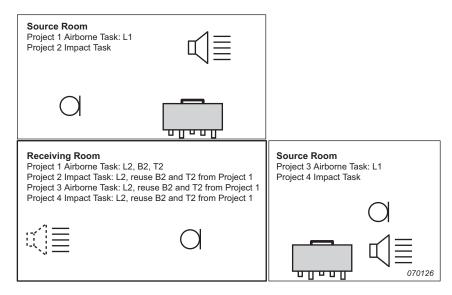

Impact Sound Level is then calculated from the L_{Zeq} spectra for average receiving room level, L2, reverberation time, T2 and receiving room background noise level, B2).

✓ Please note:

All spectra (average L2, B2 and T2) are measured as the average of several source/microphone positions.

The L2, B2 and T2 measurements are performed in a similar way to those described previously in section 2.2.2.

Fig. 2.6
Typical setup for impact sound level measurement



2.2.5 Combined Tasks and Measurements

Often more than one partition in a room is investigated, more than one task performed for the same room or partition, or several physically identical rooms in a building are measured. This means some parameters need be measured only once then reused in the calculations for several partition, tasks or rooms. An example is shown in Fig. 2.7.

The need for good bookkeeping with metadata and annotations is evident. Type 2250/2270 supports metadata, annotations and the reuse of partition data (see Chapter 4 for more information).

Fig. 2.7Typical example showing how you can combine tasks and measurements

2.2.6 Serial Measurements

When using the internal noise generator (L1, L2 and T2), you can enhance the signal to noise ratio by limiting the frequency range of the noise to cover just a single frequency band, while keeping the output power constant.

You first make a parallel measurement, then, if the signal to noise ration is too low in a few bands (typically at low frequencies) you select these bands for serial measurements. You can then redo the measurements including only these bands and merge the results with the parallel measurement.

This method can also be used to redo L1 and L2 measurements at frequencies where the L1 band levels at adjacent bands differ by more than 6 dB (for ISO 140) or 8 dB (for ISO 16283).

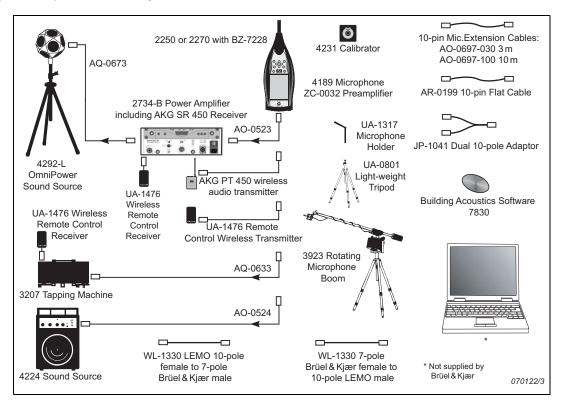
2.2.7 2-channel Measurements

Type 2270 can measure two positions simultaneously, thus reducing the measurement time.

You place two microphones at the positions you want to measure and both positions are measured simultaneously. Cabling is easy, because Type 2270 and the two microphones are placed in the same room.

2-channel measurements are possible for all the functions L1, L2, B2 and T2.

Chapter 3


System Overview

This chapter provides an overview of the equipment and accessories used to perform building acoustics measurements using:

- Type 2250 or Type 2270 with Building Acoustics Software BZ-7228 (single channel)
- Type 2270 Building Acoustics Software BZ-7228 and 2-channel Option BZ-7229

Please refer to the system overview diagram in Fig. 3.1.

Fig. 3.1 System overview diagram

For further details, see "Ordering Information" in Chapter 5.

Chapter 4

Building Acoustics Software

Building Acoustics Software BZ-7228 enables you to measure building acoustics using your analyzer (2-channel Option BZ7229 is required for Type 2270).

Check the About screen to see whether you have a license to run this module. (To access the About screen, tap the **Help** icon ? then tap **About**.)

4.1 What is a Building Acoustics Project?

When using Building Acoustics Software BZ-7228, it will be useful to know what a building acoustics project consists of, before you start to measure.

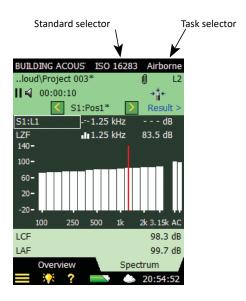
A Building Acoustics project contains data for one Partition and one Task: setup parameters, a number of L_{eq} sound level spectra, background level spectra and reverberation time spectra. The data are categorized by means of type and location (for example, room 1- source room, room 2- receiving room, etc).

In a project there are up to four categories of data:

- L1: source room sound level spectrum
- L2: receiving room sound level spectrum
- B2: receiving room background noise sound level spectrum
- T2: receiving room reverberation time spectrum

The four categories of data are referred to as Functions, so to measure L1, for example, set **Function** to *L1* (or if L1 and L2 data are measured simultaneously (2-channel measurements, Type 2270 only), set **Function** to *L1&L2*).

4.2 Navigating Building Acoustics Software


Measurement is controlled in the same way you would control a normal Sound Level Meter measurement, using **Start/Pause** , **Continue** , **Back-erase** and **Reset** pushbuttons, see *Hand-held Analyzer Types 2250 and 2270 – User Manual, Chapter 3* for more details.

This section describes all the standard drop-down menus, the status panel and general navigation features of BZ-7228 software.

4.2.1 Standard Selector

A Standard selector is provided in the Project Template bar, see Fig. 4.1.

Fig. 4.1Standard selector

The Standard selector is used to select the supported standard on which the measurements and calculations are based, see "Setting the Relevant Standard and Task" on page 27 and "Building Acoustics Standards" on page 93.

The options are:

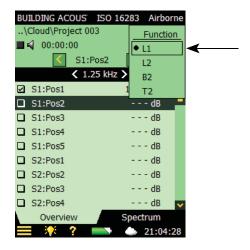
- ISO 16283
- ISO 16283LF
- SS
- DIN
- ÖNORM
- *BS*
- Sia (2006)
- UNI

- *NF*
- NBE
- CTE
- BREW
- NEN
- NEN'06
- ASTM
- ISO 140

When a project contains data, the available 'Standard' options are reduced to those compatible with the data.

4.2.2 Task Selector

Next to the Standard selector in the Project Template bar there is a Task selector (an example of an Airborne task is shown in Fig. 4.1), see also "Setting the Relevant Standard and Task" on page 27. The options are:


- Airborne
- Impact
- Façade

When a project contains data, then the available Task options are reduced to those compatible with the data.

4.2.3 Function Selector

The Function selector is located in the first line of the Status Field (see Fig. 4.2). The options are determined by the selected task and whether L1 and L2 are measured simultaneously (Type 2270 only):

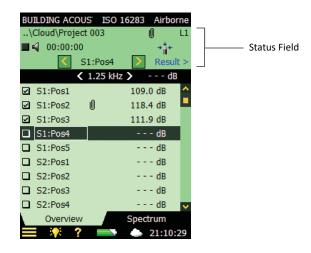
Fig. 4.2Function Selector options

If **Task** is set to *Airborne* or *Façade* and L1 and L2 are measured separately, the options are:

- L1
- L2
- B2
- T2

If **Task** is set to *Airborne* or *Façade* and L1 and L2 are measured simultaneously (Type 2270 only), then the options are:

- L1&L2
- B2
- T2


If **Task** is set to *Impact*, the options are:

- L2
- B2
- *T2*

4.2.4 Status Field

The status field contains various information regarding the current measurement:, see Fig. 4.3:

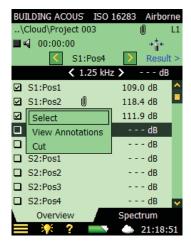
Fig. 4.3Status Field

Line 1:

- Project name and data path (tapping on data path opens the Explorer see section 4.11)
- Smiley for the Project (if applicable)
- PC 📮 connected to Measurement Partner Suite BZ-5503 via USB or a network connection
- LAN Page connected to a network through an Ethernet cable
- Wi-Fi 🛜 connected to a network via Wi-Fi. 🌉 indicates a lost connection
- **Commentary** 4 spoken commentary is being recorded, together with an indication of the available recording time
- Recording measurement signal is being recorded
- Paperclip 🗓 an annotation is attached to the project. Tap the icon to go to the Annotations screen
- The Function Selector

Line 2:

- Measurement Status
- Generator On/Off (**Loudspeaker** ◀ icon)
- Elapsed Time of measurement
- Feedback on measurement keys
- Uncal. status on calibration
- Overload/Underrange indication
- Transducer icons one per channel (linked to Setup)


Line 3:

- Position Selector (drop-down menu)
- Icons for stepping backwards or forwards in positions (or)
- Smiley for the position
- Link to results (Result >), see section 4.8.

4.2.5 Overview (L1, L2, L1&L2, B2 and T2)

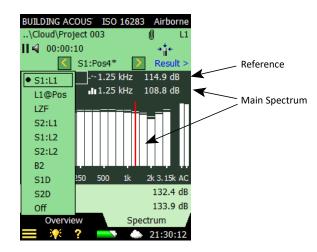
The **Overview** tab shows the measurement positions in a table – one position per row, see Fig.4.4.

Fig. 4.4Overview options

Tap on a position in the table (i.e., Pos1) for the following options:

- Select (selects the active position, which is highlighted by black bar)
- View Annotations (displays the list of annotations for the measurement)
- *Cut* (cuts the measurement for pasting at another position).
- *Paste* (pastes the cut measurement)

Cut and Paste are only available in Planned measurements (section 4.4.1) where data already exists.


When viewing the 72 function, tap the top line in the overview for the following options:

- T20
- T30

4.2.6 Spectrum Tab (L1, L2, L1&L2 and B2)

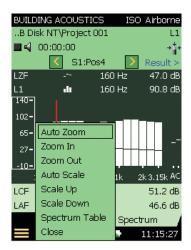

The **Spectrum** tab shows the sound pressure level spectrum for a single measurement position, but you can switch between the main spectrum view and a reference spectrum. The spectra options are shown in Fig.4.5.

Fig. 4.5The spectrum dropdown menu

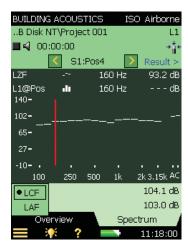
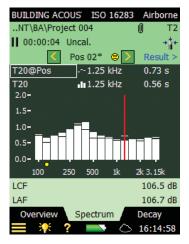

The Y-axis can be changed to suit your measurements, see the options in Fig. 4.6.

Fig. 4.6 The Y-axis drop-down menu

In the area below the spectrum, two parameters can be shown – both can be selected from drop-down menus, see Fig. 4.7.


Fig. 4.7The parameter drop-down menu

4.2.7 Spectrum Tab (T2)

The **Spectrum** tab for T2 measurements shows the reverberation time spectrum from a position (i.e., *T20@Pos* or *T30@Pos*, see Fig. 4.8), the average reverberation time (i.e., *T20* or *T30*), or both. The sound level is displayed during measurements. For more information, see section 4.5.4.

Fig. 4.8The Spectrum tab

4.2.8 Decay Tab (T2)

The **Decay** tab for T2 measurements shows the reverberation time decay from a position, the average of positions (if **Setup** > **Calculations** > **Ensemble Averaging** is set to *Yes*), or both. For more information refer to section 4.5.5.

4.3 Things To Remember

Display

- Smileys in the spectrum refer to the combined smileys of both selected spectra
- A useful selection of displayed parameters is:

L1	L2	<i>B2</i>	<i>T2</i>
L1@Pos	L2@Pos	B2@Pos	T2@Pos

You can then check the spectrum for the latest position, as well as the average spectrum, for any function. (For T2 measurements, set **Setup > Measurement Control T2 > Automatic Save** to *Off*).

Reverberation Time

- Reverberation Time: Curvature C% is displayed when *Show Regression Line* is selected from the Y-axis drop-down on the **Decay** tab
- When Setup > Calculations > Ensemble Averaging is set to Yes, manual entry must be
 made in the average T2 spectrum in order to take effect. When Ensemble Averaging set to
 No, manual entry can be made in any spectrum
- Decay for the average T2 measurement is shown only with **Ensemble Averaging** set to *Yes*

Measurement Control

- After a Planned measurement, the next position can be automatically or manually selected
- After an Unplanned measurement, the next position will be selected when starting the next measurement

Type 2270 2-channel Setup

- Assign different transducers to the two channels to ensure correct operation. This also applies to Direct inputs
- Microphone icons: the left icon is Ch.1, right is Ch.2
- Measuring L1 and L2 simultaneously:
 - Setting Setup > Input > Range Setting to High Range for L1 and Low Range for L2 works for most measurements
 - In case of Underrange indication during the averaging time (High Range only), change to Low Range. (Or use Autorange, which takes a few extra seconds)
 - L1 is Ch.1 and L2 is Ch.2. You may want to reassign B2 and T2 to Ch.2. If you change
 Setup > Input > Measure L1 and L2 to Separately, ensure that the channel assignments are as desired
 - 2-channel L1&L2 Overview: L1 or L2 shown, click on L1 to see L2, and vice versa

- Measuring two positions (channels) per function:
 - Select Ch.1 and Ch.2 as Input for the functions L1, L2, B2 and/or T2
 - Setting Setup > Input > Range Setting to High Range for L1 and T2, and Low Range for L2 and B2, works for most measurements
 - In case of an Underrange indication during the averaging time (High Range only), change to Low Range. In case of Overload indication during the averaging time (typically Low Range), change to High Range. (Or use Autorange, which takes a few extra seconds)
 - Two consecutive positions will be updated each time you save data, data from Ch.1 at the
 position you have selected, and data from Ch.2 at the subsequent position

Data

- Cut and Paste in Overview: for Planned measurements only
- Reuse: from project in Explorer into the current project
- The date of the projects in Explorer is the date when the project was last saved (e.g., after being opened and reviewed)

4.4 Level Measurements (L1, L2 and B2)

4.4.1 Planned versus Unplanned Measurements

This section describes how to set up your analyzer and how to control your level measurements. It also gives examples of how to perform Planned as well as Unplanned measurements.

The Planned measurement setup is required for the BREW and NEN/NEN'06 standards and optional for the other standards. It guides you through each stage of the measurement process in a logical sequence, which means that you can see where you are in the process at any given time. This helps to avoid confusion and can be reassuring when you are dealing with multiple microphone and sound source positions.

ISO 16283 requires L1 and L2 to be planned; however, B2 can either be planned or unplanned.

The Unplanned measurement setup is the one you should use if you are not working to a particular standard, or you do not have to keep track of several sound source positions. Or perhaps you have some previous building acoustics measurement experience and like the flexibility to follow your own procedures.

4.4.2 Trial Measurement

To familiarize yourself with the measurement procedure and to see how easy it is to measure building acoustics, you might like to try an unplanned 'trial measurement' using the default setup and settings in the BUILDING ACOUSTICS Project Template. This template contains the setup and parameters that Brüel & Kjær considers necessary to perform a basic, unplanned building acoustics measurement, starting with the L1 measurements. (For example, the ISO 140 standard

and Airborne task are selected, the microphone is selected, L1 is selected, etc.). All you have to decide is where to position your sound source and your microphone(s) in the source room.

You should not have to change the default settings for your first trial measurements, but later when you have gained more measurement experience, you can change them according to your requirements.

Please note:

The default setup and settings are only available immediately after the programme has been installed on your analyzer, these settings are overwritten every time a user saves the BUILDING ACOUSTICS Project Template. So please be aware that the may have been edited by a previous user and check the settings if you are not sure!

Simply select the BUILDING ACOUSTICS Project Template (if not already displayed tap on the black bar at the top of the screen and select BUILDING ACOUSTICS from the drop-down menu that appears) then press **Start/Pause** pushbutton to perform the first measurement, and view the result. Finally, press the **Save** pushbutton to save your level measurement at the first position.

Please note:

For more detailed information on saving setups and templates and organising your measurements, please refer to the following sections in the *Hand-held Analyzer Types* 2250 and 2270 – User Manual:

- Section 3.3 Save your Measurement
- Section 6.1 Organizing Measurements
- Section 4.5.8 How to Manage Templates
- Section 4.5.7 How to Personalize your Setup

4.4.3 About this Section

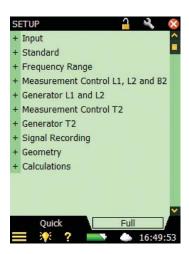
If you are not familiar with building acoustic measurements, you should read through the sections on setting up and controlling the instrument (section 4.4.4 and section 4.4.5) and then work through the planned procedure (section 4.4.6). These sections (together with the analyzer itself) will guide you through the level measurement procedures.

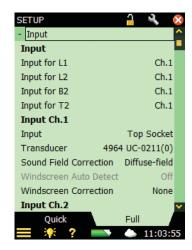
However, if you are already familiar with building acoustic measurements and have a rough idea of the procedure, you can skip the planned procedure and go straight to the unplanned procedure (see section 4.4.7), and read as much of the preceding sections as you need to.

Please note:

You can perform single- or 2-channel building acoustic measurements with Type 2270, and single-channel measurements with Type 2250.

Please refer to the following section for single-channel measurements, otherwise see "2-channel Measurements (Type 2270 Only)" on page 53.

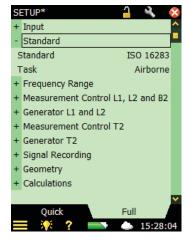

4.4.4 Setting up the Instrument (for Single-channel Measurements)


- 1) Select the BUILDING ACOUSTICS Project Template. The Project Template is displayed at the top of the screen.
- 2) Tap Main Menu = > Setup, then select the Full tab.

Input Selections

For single-channel measurements, set the **Input** parameters to those shown in Fig.4.9.

Fig. 4.9
Single-channel Input
setup for measuring
building acoustics



Setting the Relevant Standard and Task

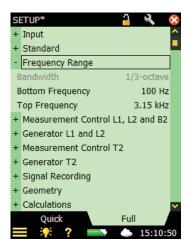
The **Standard** parameter allows you to set the relevant standard for your building acoustic measurement; various options are available (see Appendix A for details).

3) Set the **Standard** parameter, in the example in Fig.4.10, ISO 16283 has been selected:

Fig. 4.10
Setting the Standard
and Task for building
acoustics
measurements

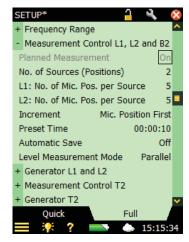
4) Set the **Task** parameter to *Airborne*, *Impact* or *Façade*, whichever is appropriate. (*Airborne* has been selected in Fig. 4.10)

The task can also be changed by tapping on the task name in the black bar at the top of the measurement screen, and selecting the required task from the drop-down list that appears.


Setting the Bandwidth and Frequency Range

5) Set the **Bandwidth** and **Bottom** and **Top Frequency** of the measurement as required, see the example in Fig.4.11. These parameters are set automatically by the selected standard; however, you can select a wider frequency range than required by the standard.

While some standards also allow 1/1-octave or 1/3-octave measurements, ISO 16283 locks the **Bandwidth** parameter to 1/3-octave.


Fig. 4.11
Setting the Bandwidth
and Bottom and Top
frequencies

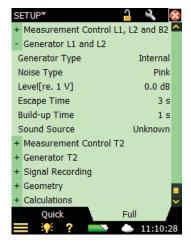
Measurement Control Setup - L1, L2 and B2

6) Set the measurement control parameters as required, see Fig.4.12:

Fig. 4.12Measurement control setup

Please note:

ISO 16283 locks the **Planned Measurement** parameter to *on* for the L1, L2 and B2 positions.


- Planned Measurement set to Onif you want to perform the measurement in a planned sequence (and define the number of source positions and microphone positions per source), or set to Off if you want to perform the measurements manually from Pos. 1 onwards*
- No. of Sources (Positions) set to the number of sound source positions you are using (only available if the Planned Measurement parameter is set to On)
- L1/L2:No of Micr. Pos. per Source set to the required number of microphone positions you are using with each source (only available if the Planned Measurement parameter is set to On)
- Increment this parameter allows you to define the order in which you want to do your measurements: Source First, Mic. Position First or Manual
- Preset Time sets the averaging time (in hours, minutes and seconds), see also Fig. 2.2
- Automatic Save set to Off if you want to inspect the measurement before manually saving it, or set to On if you want to save the measurement automatically
- Level Measurement Mode set to Parallel for measuring all bands in a spectrum simultaneously, set to Serial for measuring selected bands only (to be saved and merged with a previously measured Parallel spectrum), or set to Combined for measuring Parallel and then Serial in an automated sequence. When doing the Serial measurement the bandwidth of the generator will match the selected band, thus increasing the output power for the band and increasing the signal to noise ratio for the band

Generator Setup for L1 and L2

7) Generator Type

- Set to External if you want to control an external generator (see Table A.8)
- Set to *Internal* to use the internal generator, see Fig.4.13.

Fig. 4.13Generator setup for L1 and L2

^{*} Some standards require a planned measurement and for those standards, *Planned Measurement* is automatically selected.

- 8) **Noise Type** choose the type of noise for the internal generator, *Pink* noise is typically used.
- 9) **Level [re. 1 V]** Adjust the level of the internal generator output to match the input of the power amplifier used.

You can manually turn the generator on and off by tapping on the loudspeaker icon in the status field

- 10) **Escape Time** set this to allow you to leave the room before the generator is turned on during the measurement.
- 11) Build-up Time set this to allow the excitation noise to reach a steady state before the measurement starts. One second is adequate in ordinary rooms but should be increased for larger halls.
- 12) **Sound Source** select a type matching your sound source. Select *Unknown* if you are using a non-Brüel & Kjær sound source or do not want to make a correction to the frequency response.

For Brüel & Kjær sound sources, you may linearize the power frequency response in two steps by setting **Sound Source** *Optimum* or *Flat*, which is at the expense of a decrease (by two steps) of the total power.

Setup for Signal Recording

- 13) **Signal Recording** set **Recording Control** to *Automatic* if you want to record the microphone signal during the measurement. The recordings can be played back afterwards, so you can investigate why the measurements differed from each other and what the cause was (for example, background noise).
- 14) **Recording Quality** this parameter determines the quality of the recording by adjusting the sampling rate. The amount of space required for the recording on the memory card will depend on the selected quality see Table A.7 on page 86.
- 15) **Resolution** set this parameter to fit the signal see Table A.7 on page 86.

 Recordings will contain the microphone signal from when you press the **Start/Pause** pushbutton until the measurement stops. The recording will be attached to the measurement as an annotation.

Signal Recording requires a license for the Signal Recording Option BZ-7226, and you may also need a memory card for storing the data.

Setup Calculations

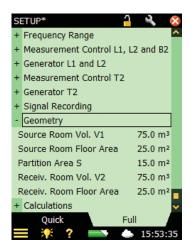
Calculations parameters (Fig. 4.14) can be set as required, they are as follows:

Fig. 4.14Setup for Calculations

- 16) **LF Project** Enter the project name (for example, Project 007LF) of the project containing the low-frequency measurement data (see section 4.6 for more information), if required.
- 17) **Ref. Curve Increment** set to 1 dB to shift the reference curve in steps of 1 dB when calculating the result parameters. This is the recommended way of operation for reporting correct result parameters as required by the standard.
 - Set to 0.1 dB to shift the reference curve in steps of 0.1 dB when calculating the result parameters. This is the recommended way of estimating the uncertainty of the results. Results are displayed with 0.1 dB resolution.

✓ Please note: The parameter has no effect for NEN and NEN'06 standards.
See section 4.8.2

and no average decay is available.


- 18) **Ensemble Averaging** set to *Yes* to average decays from all positions. Average parameters (such as T20) are then calculated based on the ensemble averaged decay, so you can display the average decay. If set to *No*, the 'Avg' parameters are just averages of reverberation times
- 19) **TO** the reference reverberation time typically 0.5 s, but it may vary with standards
- 20) **Calculate Using** use this parameter to specify which of the measured reverberation time values to use in the calculations. If T30 is specified and available, then T30 is used, otherwise T20 is used.
- 21) **Correct for Background Noise** use this parameter to specify whether L2 should be corrected for the background noise, B2, or not.

- 22) **L1: Check N dB Rule** (N=6 if ISO 140 is selected and N=8 if ISO 16283 is selected) select Yes if you want to check whether the sound spectrum in the source room has differences in level greater than 6 dB between adjacent 1/3-octave bands, or not. The check is done according to the method specified in ISO 140-4:1998, 6.2. If a difference greater than 6 dB is found, then the bands are marked with a yellow smiley. When the smiley is tapped, the following explanation appears: L1: >N dB difference to adjacent band.
- 23) **L1, L2: Check Std. Deviation** select Yes if you want to check whether the standard deviation of the averaged sound spectra in the source and receiving rooms is too big, or not. The check is done according to the method specified in ISO 140-14:2004, A.5. If the standard deviation in a frequency band is greater than twice the theoretical expected value, then the band is marked with a yellow smiley. When the smiley is tapped, the following explanation appears: "*L1 or L2: High Standard Deviation*".
- 24) **Rubber Hammer** select *Yes* if you are measuring to the NEN or NEN'06 standard, otherwise select *No.* (Only available if the *Impact* task is selected).
- 25) **Floor** select *Wood* or *Stone*, whichever is applicable. (Only available if the *Impact* task and *Rubber Hammer* parameter are selected and you are measuring to the NEN or NEN'06 standard).
- 26) **Cr** set the dB level for Cr here, if you are measuring to the NEN or NEN'06 standard. (Only available if the *Façade* task is selected).
- 27) **Traffic Type** select *Road, Rail, Air* or *Other*, whichever is applicable, when you are measuring to the NEN or NEN2006 standard. (Only available if the *Façade* task is selected).
- 28) **CL** set the dB level for CL here, if you are measuring to the NEN'06 standard. (Only available if the *Façade* task is selected).
- 29) **OILR Correction** set the dB level for OILR correction here, if you are measuring to the ASTM standard. (Only available if the *Façade* task is selected)
- 30) **OITL Correction** set the dB level for OITL correction here, if you are measuring to the ASTM standard. (Only available if the *Façade* task is selected)
- 31) To exit the Setup screen, tap 🔯.

Geometry Tab

Geometry parameters (Fig. 4.15) can be set as required, they are as follows:

Fig. 4.15Setup for Geometry

- 32) **Source Room Vol. V1** the value you insert here, which is optional, is needed for reports in some standards and is a determinant for whether you need to do special low frequency measurements following the ISO 16283 standard, see section 4.6.
- 33) **Source Room Floor Area** the value you insert here, which is optional, is needed for reports in some standards.
- 34) Partition Area S the value you insert here is used in calculation of results.
- 35) **Receiv. Room Vol. V2** the value you insert here is used in calculation of results and is a determinant for whether you need to do special low frequency measurements following the ISO 16283 standard, see section 4.6.
- 36) **Receiv. Room Floor Area** the value you insert here, which is optional, is needed for reports in some standards.

4.4.5 Controlling the Measurement

Measurement is controlled in the same way you would control a level measurement, using **Start/Pause** , **Continue** , **Back-erase** and **Reset** pushbuttons, see *Hand-held Analyzer Types 2250 and 2270 – User Manual, Chapter 3* for more details.

The measurement control procedures for sound pressure level look very similar to those for measuring reverberation time (see also section 4.6). The only difference between the displays is that the time units (s) are replaced by sound level units (dB) and the reverberation time average (for example T20) is replaced by a sound pressure level average (for example, L1). (The reverberation software also has an extra **Decay** tab, which contains a Decay view, see also section 4.6).

In this section, two examples have been used: one to illustrate how to perform a planned measurement task, and the other to illustrate how to perform an unplanned measurement task

Changing Function

You can change the function (L1, L2, B2 or T2) at any time during the measurement sequence; you do not have to follow a certain sequence if it does not suit you. For instance, you might want to do the L2 measurement before L1, or perform the measurements in a completely random order depending on site conditions.

4.4.6 Example of a Planned Measurement Task

The task is to determine the airborne sound insulation between two rooms according to ISO 16283.

- 1) Connect the cables, amplifier and sound source (please refer to Fig. 3.1).
- 2) Under the **Standard** parameter, set **Standard** to *ISO 16283*, and **Task** to *Airborne* (both indicated next to the template selector, see example in Fig.4.16).

Only those parameters noted below need to be set up for a Planned Measurement task, the remaining parameters should be left at their default settings.

Fig. 4.16Typical
ISO 16283/Airborne
spectrum display

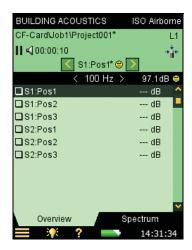
- 3) Determine the sound level of the source room will be determined (indicated below the Template Selector, on the second line: *L1*).
- 4) With an empty Building Acoustics template, set **Setup** > **Measurement Control L1, L2 and B2** parameters:
 - Planned Measurement locked to On.
 - Number of Sources (Positions) to 2.
 - L1: No. of Mic Pos. per Source and L2: No. of Mic Pos. per Source to 3.

5) Check the levels by tapping on the lower parameter of the two parameter selectors shown above the graph, and select the instantaneous level *LZF* (Fig. 4.16). You can check the level of the sound source by switching it on and off using the loudspeaker icon 4.

LAF and LAC broadband readouts are shown to the right in the spectrum.

Ready for First Measurement

✓ Please note:


When measuring according to ISO 16283-1, each source position must be measured for L1 and L2 before moving to the next source position in a default measurement.

- 6) The third line of the status field shows *S1:Pos1*, this is the position selector and it indicates the current source and microphone position. (The current source and microphone position are also displayed in a list on the **Overview** tab, see Fig.4.17).
- 7) Select L1@Pos instead of LZF in the lower parameter and S1:L1 in the upper parameter. This will allow you to monitor the average level of L1 and the level of the current position throughout the measurement, see Fig.4.17.
- 8) Press the **Start/Pause** pushbutton to perform the first measurement, *S1:Pos1** will be displayed in the status field. The '*' indicates that the measurement has not been saved. After 10 seconds, the measurement data are shown in the black line below the position selector (Fig. 4.17, left).

Please note:

If a smiley appears during the measurement, it will appear in the black line below the Status Field/Position Selector. Two smileys are shown in Fig. 4.17: one is applicable to the 100 Hz band in the black line, and the other smiley above it is for the complete position S1:Pos1*. Small smileys are set below each frequency band with a potential problem. The smileys are also available at the cursor readouts. Tap on the smiley at the cursor readout for detailed information. (For a description of status indicators and smileys, see "Quality Indicators" on page 61.) The Spectrum is shown in Fig. 4.17, right.

Fig. 4.17
Overview and
Spectrum tabs after
the first measurement

9) Press the **Save** (3) pushbutton. The measurement is saved as *S1:Pos1*. The smiley is updated for the complete project on the upper line. *S1:Pos2* is automatically selected (Fig. 4.18).

Fig. 4.18
Overview and
Spectrum tabs just
before the second
measurement

10) Press the **Start/Pause** pushbutton to measure in sequence at *Pos2, Pos3*, etc.

The selection possibilities for spectrum parameters on the measurement display are listed in Table 4.1

Table 4.1Spectrum
parameters –
measurement display

Function	Graph
L1, L2, B2, T2	LZF
L1	L1@Pos
L2	L2@Pos
B2	B2@Pos
T2	T20@Pos
T2	T30@Pos
L1, L2, B2	L1
L1, L2, B2	L2
L1, L2, B2	B2
L1, L2, B2	L1 – L2
L1, L2, B2	L2 – B2
L1, L2, B2, T2	Off
T2	T20
T2	T30

The Overview position selector has the following options available:

- S1:Pos1
- S1:Pos2
- S1:Pos3
- S2:Pos1*
- S2:Pos2
- S2:Pos3

(The '*' indicates unsaved data – in this example for S2:Pos1.)

11) When the L1 measurements have been done, change the function to L2, B2 or T2 and continue measuring in the same way as described above until all functions have been measured.

The B2 function has no Planned source/microphone position sequence, you just measure it in a number of positions.

Automatic Increment

The **Increment** parameter (under **Measurement Control L1, L2 and B2** parameters) defines the order in which you want to do your planned measurement: sources first (*Source First*) or microphone positions first (*Mic. Pos. First*). You can also decide to choose each subsequent position manually, see 'Manual Selection of Measurement Position' that follows.

Automatic Save

Set the **Automatic Save** parameter to *On* to automatically save the measurement and increment the position counter to be ready for measuring at the next position.

Manual Selection of Measurement Position

If you select another measurement position, the **Save** (a) pushbutton will save at this position and select the next position as defined by the **Increment** parameter (under **Measurement Control L1, L2 and B2** parameters). This might be a position where some data have already been saved.

An extra pop-up warning will appear if you try to save the data in a position already containing data.

If the **Increment** parameter is set to *Manually* then the position will not automatically change after you save. You have to select a new position before every save operation.

Changing the Number of Sources and Microphone Positions

For planned measurements, you can increase and decrease the number of source positions and the number microphone positions per source in the setup.

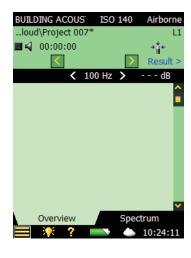
Please note:

You cannot delete any positions you already have measured.

4.4.7 Example of an Unplanned Measurement

Set the **Planned Measurement** parameter to *Off* if you just want to measure at a number of positions without keeping track of the relation between source and microphone positions, and just want to measure from *Pos1* and forwards.

Please note:


This is not available for the standards BREW, NEN, NEN'06, and ISO 16283.

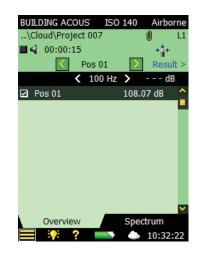
12) Press the **Start/Pause** pushbutton to make a *Pos1* measurement. The result of the measurement is shown in the black line above the table, see Fig. 4.19.

Fig. 4.19 Unplanned measurement

Left: Before pressing **Start/Pause** pushbutton on a Pos1 measurement

Right: The result of the Pos1 measurement before saving

Please note:


If a smiley appears during the measurement, it will appear in the black line below the Status Field/Position Selector. Two smileys have been shown for illustration purposes in Fig.4.19: one is applicable to the 100 Hz band in the black line, the other smiley above it is for the complete position *Pos1**. Small smileys are set below each frequency band with a potential problem. The smileys are also available at the cursor readouts. Tap on the smiley at the cursor readout to get detailed information about the warning. (For a description of status indicators and smileys, see "Quality Indicators" on page 61.) The Spectrum is shown in Fig.4.17, right.

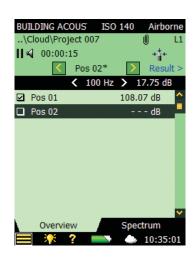

- 13) An empty *Pos1** has been created and selected in the table. Press the **Save** (3) pushbutton and the measurement is saved at *Pos1*. The smiley is updated for the complete project in the upper line.
- 14) Press the **Start/Pause** pushbutton to make a *Pos2* measurement. The result of the measurement is shown in the black line above the table, see Fig.4.20.

Fig. 4.20Unplanned
measurement

Left: Before pressing
Start/Pause
pushbutton on a Pos2
measurement

Right: The result of the Pos2 measurement

15) An empty *Pos2** has been created and selected in the table. Press the **Save** pushbutton and the measurement is saved at *Pos2*. The smiley is updated for the complete project in the upper line.

This will be repeated for every other position in your measurement sequence.

Unlike the planned measurement, the next position is not selected when pressing the **Save** pushbutton. (With a Planned Measurement, pressing **Start** will always suggest a new position one higher than the number of measured positions.)

Manual Selection of Measurement Position

If you select another measurement position and **Automatic Save** is *Off*, the **Save** pushbutton will save at that position. This will always be at a position that was measured earlier and contains data. A pop-up window will then appear to warn you about overwriting data.

4.4.8 Example of a Serial Measurement

Assuming you have made either a Planned (section 4.4.6) or an Unplanned (section 4.4.7) Measurement Task, then maybe at some frequencies you haven't been able to get a sufficient signal-to-noise ratio. This will show up at frequencies in the L2 function, if the level of the L2 band is too close to the level of the B2 band (background noise), see Fig.4.21. In this example you can see that the B2 level is at 55.9 dB, and this is too close to the L2 level at 60.1 dB, so a yellow smiley is generated. If you click the smiley, you will be informed that the background noise level is too high.

Then you either have to lower the background noise (which might not be possible) or increase the power of the loudspeaker in the source room.

If your loudspeaker already produces as much noise as possible, then you can limit the frequency range of the noise to cover just a single frequency band, while keeping the output power constant – thus increasing the noise level in the smaller frequency range. For a 1/3-octave band this will increase the noise level at the band by up to 10 dB.

Fig. 4.21 Indication that the background noise level is too high

To select the frequency bands to be measured (using noise limited to cover these bands only), tap Main Menu > Setup > Measurement Control L1, L2 and B2 > Level Measurement Mode and select Serial.

On the **Spectrum** tab, select the bands you want to measure using the cursor and tap on the x-axis to select the band for serial measurement, see Fig.4.22.

Fig. 4.22Selecting the bands for serial measurement

✓ Please note:

A small 's' appears above the selected frequency bands, see Fig.4.22.

When you have selected the frequency bands you want to re-measure, press the **Start/Pause** pushbutton. The analyzer will then start at the lowest selected frequency band, generate noise at this band, make the measurement and automatically step to the next selected band. This will continue until all selected bands have been measured. Press the **Save** pushbutton to save and merge the bands with the measurement you have already done – be sure to select the right position before saving.

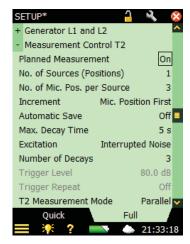
You need to measure the same bands serially at all the positions you have measured for both L1 and L2. (If you do not measure them serially, a red smiley warns you of the problem. Similarly, a yellow smiley informs you which bands have been measured serially.)

Combine Parallel and Serial Measurements in an Automated Sequence

You can speed up the measurement process if you start investigating whether you need to use serial measurements at certain frequency bands, or not. If you need to measure some bands serially, then you can select tap **Main Menu Setup** > **Setup** > **Measurement Control L1, L2 and B2** > **Level Measurement Mode** and select *Combined.* Then select the bands you want to measure serially like you did in the previous section.

Pressing the **Start/Pause** pushbutton will now make a normal parallel measurement and then do the serial measurements – all in an automated sequence.

Serial measurements can also be used to redo L1 and L2 measurements at frequencies where the L1 band levels at adjacent bands differ by more than 6 dB for ISO 140 or 8 dB for ISO 16283


4.5 Reverberation Time Measurements (T2)

4.5.1 Setting up the Instrument

This section assumes that you followed the procedure in section 4.4, so most default settings are already set up. The following parameters need to set before performing T2 measurements:

- 1) Set the Function Selector to *T2* and check that the Standard and Task Selectors are still set as required, see Fig. 4.1.
- 2) If you want to define the number of source positions and microphone positions per source, tap **Main Menu** > **Setup** > **Measurement Control T2** > **Planned Measurement** and select *On* (see Fig. 4.23); otherwise, the measurements are made manually from *Pos 1* onwards.

Fig. 4.23Measurement control setup for T2

- 3) Set **No. of Sources (Positions)** parameter to the number of sound source positions you require for your T2 measurement. (Only available if **Planned Measurement** is set to *On.*)
- 4) Set **No. of Micr. Pos. per Source** parameter to the number of microphone positions per sound source that you require for your T2 measurement. (Only available if **Planned Measurement** is set to *On.*)
- 5) Set the **Increment** parameter depending on the order in which you want to do your measurements: either *Source First, Mic. Positions First,* or manually (*Manual*). (Only available if **Planned Measurement is set** to *On*.)
- 6) Set **Automatic Save** to *Off* if you want to inspect the reverberation time and decays before manually saving the measurement; otherwise, select *On* to automatically save the decays after each measurement.
- 7) The analyzer automatically detects the end of the decay; however, under special conditions (for example, when measuring with high background noise) the end of the decay cannot be detected and the measurement will run up to 20 s. To minimize the measurement time and memory requirement for the measurement, you can limit the measurement by setting the **Max Decay Time**. Five seconds is adequate for most ordinary rooms but should be increased for larger halls or reverberation rooms.
- 8) If you are using a loudspeaker source, set **Excitation** to *Interrupted Noise* and go to step 9). Otherwise, if you want to measure using the impulse method (i.e., using a balloon burst or a starting pistol), set **Excitation** to *Impulsive* and go to step 11). (For a description of these two methods, please refer to the *Hand-held Analyzer Types 2250 and 2270 User Manual*, 14).

Interrupted Noise Method

- 9) Set the number of decays you want to measure per position. The analyzer automatically controls the generator, measurement of the decays and averaging the decays. (Only available if the **Excitation** parameter is set to *Interrupted Noise*).
- 10) Set **Generator** as required. These parameters are the same as those described in the Level Measurements section. See "Generator Setup for L1 and L2" on page 29. Go to step 13).
- 11) **T2 Measurement Mode** set to *Parallel* for measuring all bands in a spectrum simultaneously, set to *Serial* for measuring selected bands only (to be saved and merged with a previously measured Parallel spectrum), or set to *Combined* for measuring Parallel and then Serial in an automated sequence. When doing the Serial measurement the bandwidth of the generator will match the selected band, thus increasing the output level of the band and increasing the signal to noise ratio for the band.
 - Serial measurements for T2 are made in a similar way to L1 and L2 measurements see the example in section 4.4.8.

Impulsive Method

- 12) Set **Trigger Level** low enough to be sure the impulse will be triggered, but high enough to avoid triggering on the background noise between 80 and 100 dB is normally adequate. (Only available if the *Excitation* parameter is set to *Impulsive*.)
- 13) If you have selected **Automatic Save** = *yes*, then **Trigger Repeat** can be set to *yes* to automatically start a new measurement when a measurement has been saved. (Only available if the **Excitation** parameter is set to *Impulsive*.) This allows you to go to another position and make a new impulse without the need for controlling Type 2250/2270 between the measurements. Observe how the Traffic Light indicates the status of the measurement, making it easy for you to change position and generate the impulse synchronized with the measurement procedure. Press the **Start/Pause** pushbutton to stop the measurement when the last measurement has been saved.

Generator Setup for T2

The parameters for setting up the generator for Reverberation Time measurements (T2) are identical to those for the generator setup of L1 and L2 (see Fig. 4.13 and "Generator Setup for L1 and L2" on page 29).

Signal Recording

The parameters for setting up Signal recording are identical to those described in "Setup for Signal Recording" on page 30).

Controlling the Measurement

Measurement is controlled in the same way you would control a level measurement, using **Start/Pause** Analyzer Types 2250 and 2270 – User Manual, Chapter 3 for more details.

Planned Measurements

- Press the **Start/Pause** pushbutton when the first measurement position (*S1:Pos1*) is highlighted in the Overview table. When the measurement is finished *S1:Pos1** will be displayed
- Press the **Save** (a) pushbutton to save the measurement at the *S1:Pos1* position. *S1:Pos2* will be selected automatically. Press the **Start/Pause** (b) pushbutton to measure in sequence at Pos2, Pos3, etc.

Unplanned Measurements

- Press the **Start/Pause** pushbutton to make a *Pos1* measurement. An empty *Pos1** has been created and selected in the Overview table
- Press the **Start/Pause** pushbutton to make a *Pos2* measurement and repeat the above procedure for the remaining positions in your measurement sequence

4.5.2 Displaying the Results

The Reverberation Time measurement screen includes three tabs at the bottom: **Overview**, **Spectrum** and **Decay**. You can view the measurement results in three different ways using the tabs at the bottom of the screen:

- **Overview**: Shows the measurement positions in a table one position per row. Use this to get an overview of your measurements, to include/exclude positions from the spatial average of all positions in the room, and to manage annotations/signal recordings at the positions
- **Spectrum**: Shows the reverberation spectra graphically, or as a table, for one position, or for the room average. Alternatively, it can show the instantaneous sound pressure level while measuring
- **Decay**: Shows the reverberation decay at a single frequency, for one position, or for the room average (set **Main Menu > Setup** > **Calculations** > **Ensemble Average** to *Yes*)

4.5.3 Overview

The **Overview** tab shows the measurement positions in a table – one position per row.

Fig. 4.24
Overview tab

The header row contains (from left to right):

- The T2 selector (T20 or T30), which determines which T2 to display in the table rows below. It is also linked to the main Spectrum selector and main Decay selector
- The Frequency selector (which includes decrement

 and increment

 buttons),
 determines the frequency of the readouts in the table rows below. The frequency selector
 is linked to the Spectrum cursor and the frequency of the selected decay
- Readout of the T2 value for the current measurement, before it is saved to a position

Each row of the table contains (from left to right):

- A checkmark \(\sqrt{} \) controlling whether the position is included or excluded from the average. Tap on the checkbox to include (check) or exclude (uncheck) the position. All positions are by default included in the average
- Tap on the position to get a drop-down menu with two options: Select and View Annotations. Use Select to select a position other than the one (automatically) selected if you need to go back and redo a measurement, for example. Use View Annotations to view the list of annotations for the position. You can add annotations on the position from this view
- Possible annotations are indicated by **1**. Tap on it to view the list of annotations for the position
- The readout of the T2 parameter at the frequency determined by the T2 selector and Frequency selector in the table header row. There might be a smiley to the right of the readout warning about the quality of the readout. Tap on the smiley to get more detailed information about the warning

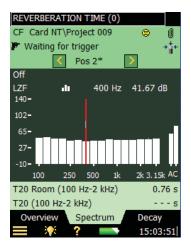
4.5.4 Spectrum

The **Spectrum** tab shows the reverberation time spectrum from a position, the average reverberation time, or both. The instantaneous sound level is displayed during measurements.

Fig. 4.25 Spectrum tab

Spectrum Graph

The Spectrum graph is the same as in the L1, L2 and B2 measurements: Two 1/1-octave or 1/3-octave spectra superimposed with cursor readouts. The displayed frequency range is automatically adjusted for the measured frequency range.


Small smileys are set below each frequency band with a potential problem. The smileys are also available at the cursor readouts. Tap on the smiley at the cursor readout to get detailed information about the warning.

The Spectrum Parameter Selectors above the graph select which spectra to display. You can choose to display: *T20@Pos, T30@Pos, T20* or *T30*. If you only want one graph, you can set the other to *Off*.

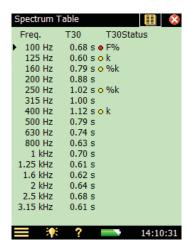
In addition to choosing which parameter to display, you can also select *Display Sound Level*, which will display the Z-weighted spectrum LZF together with the A- and C-weighted broadband levels – see Fig.4.26. When displaying LZF you can tap on the LZF selector and select *Display Reverberation Time* to display the reverberation time spectra.

When starting a measurement the graph will automatically display the sound level spectrum, and when finished it will display the reverberation time spectrum.

Fig. 4.26Spectrum view when measuring

The main spectrum graph on the display (the bar graph) is selected using the parameter selector on the second line of the two shown above the graph (LZF in Fig. 4.26). The parameter selector for the main spectrum is linked to the selector on the **Overview** tab and the parameter selector for the main decay on the **Decay** tab.

The other spectrum on the display (the one displayed as small lines above and below the bars in Fig.4.25) is selected using the parameter selector on the first line of the two shown above the graph (*T20@Pos* in Fig.4.25). This spectrum can be used as a reference when comparing it to the main spectrum, and it is linked to the parameter selector for the reference decay curve in the Decay view.


Smileys below the spectra (if there are any) are set if a smiley is present for at least one of the spectra.

The cursor is linked to the frequency selectors on the **Overview** and **Decay** tabs.

Tap on the Y-axis to select:

- Auto Zoom to adjust the range of the Y-axis for best fit of the measured spectrum
- Zoom In/Zoom Out to adjust the zoom
- **Spectrum Table** to display the spectrum in a table, see an example in Fig.4.27
- Close to exit the drop-down

Fig. 4.27Spectrum table

Auxiliary Parameters

Below the graphics are two lines containing parameters for displaying the LCF and LAF broadband values.

4.5.5 Decay

The **Decay** tab shows the reverberation time decay from a position, the average of positions, or both, see Fig.4.28.

Decay Graph

The Decay Graph shows the decay of one frequency band for the selected position, the decay of the same frequency band for the average of positions (requires Ensemble Averaging), or both.

Fig. 4.28Decay view

The Decay Parameter Selectors above the graph select which decay to display: T20@Pos or T30@Pos. Each of these selections show the decay for the measurement at the selected position together with the readout of T20@Pos and T30@Pos resp. T20 and T30 show the decay for the current position. If you only want one graph you can set the other selector to Off.

The main decay on the display (displayed as a continuous line) is selected using the parameter selector in the second line of the two shown above the display (T30@Pos in Fig.4.28). The parameter selector for the main decay is linked to the selector on the **Overview** tab and the parameter selector for the main spectrum on the **Spectrum** tab.

The other decay on the display (displayed as a dashed line) is selected using the parameter selector in the first line of the two shown above the display (*T20@Pos* in Fig.4.28). This decay can be used as a reference when comparing it to the main decay, and it is linked to the parameter selector for the reference spectrum on the **Spectrum** tab.

The Frequency band selector (with decrement and increment buttons as well) determines the frequency band of the decay curves. The frequency band selector is linked to the spectrum cursor and the frequency band selector on the **Overview** tab.

Just below the parameter selectors on the right side of the view area, the value of a single status indicator is displayed: C: xx%. This is the curvature indicator, and if it shows above 10%, the status indicator '%' is set, meaning 'Decay is bent'.

For more details on status indicators and smileys, see "Quality Indicators" on page 61.

Tap on the Y-axis to select:

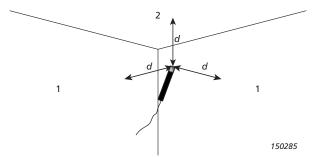
- Auto Zoom to adjust the range of the Y-axis for best fit of the measured spectrum
- Zoom In/Zoom Out to adjust the zoom
- Auto Scale to select the best scaling for viewing the spectra without adjusting the zoom
- Scale Up/Scale Down to adjust the full scale value on the Y-axis
- Show/Hide Regression Line to show/hide the regression line and the evaluation range for the main decay together with the status indicator C
- Close to exit the drop-down menu

4.6 Low-frequency Measurements

ISO 16283 sometimes requires low-frequency measurements in order to correct spectra for rooms where the sound field, may not be approximated to a diffuse sound field, particularly in rooms with a volume smaller than 25 m^3 and where low-frequency content from 50 to 80 Hz is of interest (Table 4.2).

Table 4.2Functions that require low frequency measurement

Function	Room Size		
	Source Room < 25 m ³	Receiving Room < 25 m ³	
L1	Yes	No	
L2	No	Yes	
B2	No	Yes	
T2	No	Yes	


The measurements consists of:

- A set of L1 measurements in a minimum of four corners (where V1 < 25 m³)
 or
- A set of L2 and B2 measurements in a minimum of four corners and a T2 measurement that is not measured in a corner (where $V2 < 25 \text{ m}^3$) or
 - All the above measurements if both V1 and V2 $< 25 \text{ m}^3$

✔ Please note:

When measuring T2 (ISO 16283LF) **Bandwidth** is locked to *1/1-octave* and **Bottom Frequency** is locked to *63 Hz.*

Fig. 4.29
An example of corner measurement positioning given in ISO 16283–1, where: 1 represents walls 2 represents the ceiling and distance, d, is between 0.3 and 0.4 m

4.6.1 Using the Low-frequency Measurement Results

There is no *Results >* link to click. The low-frequency measurement results are only used for corrections for ISO 16283 measurements.

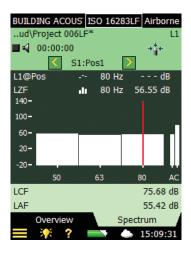
Low-frequency measurement measurements can be performed before or after the ISO 16283 measurement.

To perform the Low-frequency measurement after the ISO 16283 measurement:

- 1) Set up your analyzer for an ISO 16283 measurement as described in section 4.4 with the following amendments:
 - The **Main Menu** > **Setup** > **Geometry** parameter must have one room volume that is less than 24.5 m³
 - The Main Menu > Setup > Frequency Range > Bottom Frequency must be set to 50 Hz
- 2) Perform the ISO 16283 measurement
- 3) When the last measurement position has been saved, press the **Reset** pushbutton. If both conditions in step 1 have been met, pressing will trigger a pop-up dialog.
- 4) Tap **Yes** to create and open a low-frequency project.

 This will trigger a notice pop-up window advising that the generator settings remain unchanged.
- 5) Tap **OK**.
- 6) Set up and perform the low-frequency measurement as normal.
- ✓ Please note:
- The generator settings for L1 and L2 must be identical for the ISO 16283 and ISO 16283LF projects
- The ISO 16283LF project must contain valid data

To perform the low-frequency measurement first:


- 1) Set up and perform the ISO 16283LF measurement described in section 4.6.2
- 2) Set up and perform the ISO 16283 measurement as described in section 4.4 and set **Main**Menu > Setup > Calculations > LF Project to the name of the ISO 16283LF project.
- **✔** Please note:
- The generator settings for L1 and L2 must be identical for the ISO 16283 and ISO 16283LF projects
- The ISO 16283LF project must contain valid data

4.6.2 Example of a Low-frequency Measurement Task

The task is to determine the airborne sound insulation between two rooms according to ISO 16283LF.

- 1) Connect the cables, amplifier and sound source (please refer to Fig. 3.1).
- 2) Under the **Standard** parameter, set **Standard** to *ISO 16283LF*, and **Task** to *Airborne* (both indicated next to the template selector, see example in Fig.4.30).
- ✓ Please note: Only those parameters noted below need to be set up for a Planned Measurement task, the remaining parameters should be left at their default settings.

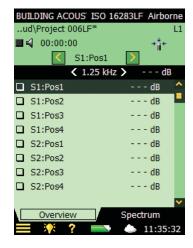
Fig. 4.30Typical ISO 16283LF
Airborne spectrum
display

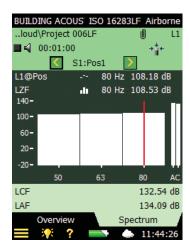
- 3) The sound level of the source room will be determined (indicated below the Template Selector by the Function Selector *L1*).
- 4) With an empty Building Acoustics template, under the **Measurement Control L1, L2 and B2** parameters:
 - Planned Measurement locked to On.
 - Set Number of Sources (Positions) to 2.

The number of measured B2 and L2 positions are the same because background noise corrections require L1@S1:Pos N, L1@S2:Pos N and B2@Pos N must be measured in the same corner, for each position N.

- Set L1: No. of Mic Pos. per Source and L2: No. of Mic Pos. per Source to 4.
- 5) Check the levels by tapping on the lower parameter of the two parameter selectors shown above the graph, and select the instantaneous level *LZF*, see Fig. 4.16. You can check the level of the sound source by switching it on and off using the loudspeaker icon 4.

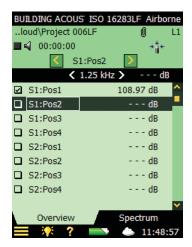
LAF and LAC broadband readouts are shown to the right in the spectrum.

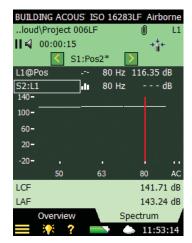

Ready for First Measurement


- 6) The third line of the status field shows *S1:Pos1*, this is the position selector and it indicates the current source and microphone position. (The current source and microphone position are also displayed in a list on the **Overview** tab, see Fig.4.17).
- 7) Select L1@Posinstead of LZF in the lower parameter and S1:L1 in the upper parameter. This will allow you to monitor the average level of L1 and the level of the current position throughout the measurement, see Fig.4.17.
- 8) Press the **Start/Pause** pushbutton to perform the first measurement, *S1:Pos1** will be displayed in the status field. The '*' indicates that the measurement has not been saved. After 15 seconds, the measurement data are shown in the black line below the position selector (Fig. 4.31, left).

Please note:

If a smiley appears during the measurement, it will appear in the black line below the Status Field/Position Selector. Small smileys are set below each frequency band with a potential problem. The smileys are also available at the cursor readouts. Tap on the smiley at the cursor readout for detailed information. (For a description of status indicators and smileys, see "Quality Indicators" on page 61.)


Fig. 4.31
Overview and
Spectrum tabs after
the first measurement



9) Press the **Save** (4) pushbutton. The measurement is saved as *S1:Pos1*. The smiley is updated for the complete project on the upper line. *S1:Pos2* is automatically selected to indicate the next measurement position (Fig. 4.18).

Fig. 4.32
Overview and
Spectrum tabs just
before the second
measurement

- 10) Press the **Start/Pause** pushbutton to measure in sequence at *Pos2*, *Pos3*, etc.
- 11) When the L1 measurements have been done, change the function to L2, B2 or T2 and continue measuring in the same way as described above until all functions have been measured.

The B2 function has no Planned source/microphone position sequence, you just measure it in a number of positions.

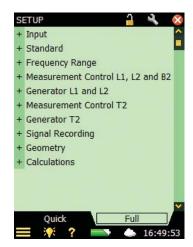
4.7 2-channel Measurements (Type 2270 Only)

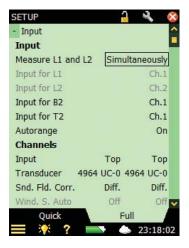
4.7.1 Setting up the Instrument (for 2-channel Measurements)

1) Select the 2-Ch. B. ACOUSTICS Project Template. The Project Template is displayed on the black bar at the top of the screen. If it does not display 2-Ch. B. ACOUSTICS, tap the black bar and select 2-Ch. B. ACOUSTICS from the drop-down menu that appears.

✓ Please note:

2-channel measurements require a license for BZ-7229.


2) Tap **= > Setup** and select the **Full** tab.


Input Selections

For 2-channel measurements, setting up the analyzer is the same as for single-channel measurements (see section 4.4.4), apart from the following input parameters:

- 3) Set the **Measure L1 and L2** parameter to either *Simultaneously* or *Separately*, depending on whether you want to measure L1 and L2 at the same time in the source and receiving room or one after the other, see Fig. 4.33.
- 4) Set the **Input for L1**, **Input for L2**, **Input for B2** and **Input for T2** parameters to the required input channel: either *Ch. 1* or *Ch. 2*, depending on which one you are using, or to *Ch. 1* and *Ch. 2* if you want to measure two positions simultaneously.
- 5) Set the **Autorange** to *On* for autoranging Ch.1 and Ch.2, or set it to *Off* for manually setting the range. This is only relevant if the *Measure L1 and L2* parameter has been set to *Simultaneously*, or if the **Input for ...** parameter has been set to *Ch.1 and Ch.2*.

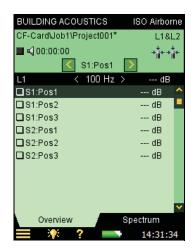
Fig. 4.33
2-channel Input setup
for measuring building
acoustics using
Type 2270

6) For 2-channel measurements, there are also two independent sets of input selections you can set: channel 1 and channel 2. They are set as follows:

Set the **Range Setting** to *High Range*, or *Low Range* as required. The difference between the two settings is 30 dB. High Range can be used to measure up to the maximum input level. This is only relevant if the **Measure L1 and L2** parameter is set to *Simultaneously*, or if the **Input for ...** parameter has been set to *Ch.1 and Ch.2 Simult.* and **Autorange** is set to *Off*.

Fig. 4.34
2-channel input
selections for
measuring building
acoustics using
Type 2270

4.7.2 Controlling the Measurement


Using two channels in Type 2270 has a couple of advantages over single-channel measurements, these are as follows:

- Measurements of Façade sound insulation, with traffic noise as a sound source, require that
 the source measurement (outdoors) and receiving room measurements are taken at the
 same time this requires 2-channel capability
- Using two channels allows you to measure L1 and L2 simultaneously, which speeds up the measurement process
- Using two channels allows you to measure two positions simultaneously, which speeds up the measurement process

Measure L1 and L2 Simultaneously

7) Set the **Measure L1 and L2** parameter to *Simultaneously* under Input selections. When you then select the *L1&L2* function (see Fig. 4.35), the analyzer will measure L1 using Ch. 1 and L2 using Ch. 2.

Fig. 4.35
Measuring L1 and L2
simultaneously
(Planned
measurement)

- 8) The **Overview** tab still shows either the L1 or the L2 measurements; you select which one to display by the leftmost parameter on the black frequency selection line.
- 9) Select the **Spectrum** tab to check the levels by selecting the instantaneous levels *Ch.1 LZF* and *Ch.2 LZF*, see Fig. 4.36.

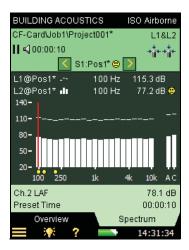
Fig. 4.36
Checking the
instantaneous levels
—during an L1 and L2
measurement

✓ Please note:

Ch.1 LZF can only be selected in the upper graph and *Ch.2 LZF* can only be selected in the lower graph.

- 10) You can check sound source level by switching it on and off using \P .
- ✔ Please note: LAF and LAC broadband readouts are always shown to the right in the spectrum.

Ready for First Measurement


- 11) The third line of the status field shows *S1:Pos1*. This is the position selector, and it indicates the current source and microphone position. (The current source and microphone position are also displayed in a list on the **Overview** tab, see Fig. 4.18).
- 12) On the **Spectrum** tab, select *L1@Pos* as the upper graph and *L2@Pos* as the lower graph, see example in Fig.4.37.

If you would like be able to monitor the average level of L1 and L2 throughout the measurement, you can select L1 as the upper graph and L2 as the lower graph.

13) Press **Start/Pause** pushbutton to perform the first measurement, this is indicated by *S1:Pos1** being displayed in the status field. The '*' indicates that the measurement has not been saved, see Fig.4.37.

Fig. 4.37
Measurement not yet saved after a simultaneous 2-channel measurement

14) Press the **Save** (3) pushbutton and the measurement is saved as *S1:Pos1*. The smiley is updated for the complete project on the upper line. *S1:Pos2* is automatically selected to indicate the next measurement position, see Fig.4.38. (L1 and L2 are selected again, as they were before pressing the **Start/Pause** (4) pushbutton.)

Fig. 4.38 S1:Pos2 automatically selected to indicate next measurement position

15) Press **Start/Pause** pushbutton to measure in sequence at *Pos 2, Pos 3,* etc.

The selection possibilities for spectrum parameters (in a Planned measurement) are listed in Table 4.3.

Table 4.3Spectrum
parameters – Result display

Function	Upper Graph	Lower Graph
L1&L2	Ch. 1 LZF	Ch. 2 LZF
B2, T2	LZF	LZF
L1&L2	L1@Pos	L1@Pos
L1&L2	L2@Pos	L2@Pos
B2	B2@Pos	B2@Po
T2	T20@Pos	T20@Pos
T2	T30@Pos	T30@Pos
L1&L2, B2	L1	L1
L1&L2, B2	L2	L2
L1&L2, B2	B2	B2
L1&L2, B2	L1 – L2	L1 – L2
L1&L2, B2	L2 – B2	L2 – B2
L1&L2, B2, T2	Off	Off
T2	T20	T20
T2	T30	T30

The position selector has the following options available for L1, as well as L2:

- S1:Pos1
- S1:Pos2
- S1:Pos3
- S2:Pos1
- S2:Pos2
- S2:Pos3

Measuring Two Positions Simultaneously in the Same Room

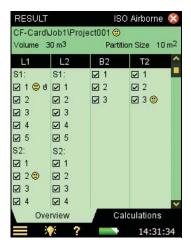
To speed up the measurement process, you can measure two positions (channels) simultaneously in the same room.

Set the required **Input for L1**, **L2**, **B2** and **T2** parameters to *Ch.1* and *Ch.2*. Then the measurement process will be the same as for single-channel measurements, except you measure and save data for two positions at a time.

While measuring, the displayed instantaneous spectra will be *Ch.1 LZF* and *Ch.2 LZF*. The measured (but not saved) data will be displayed as two consecutive positions, the first time it will be *S1:Pos 01** and *S1:Pos 02** (for planned measurements) and *Pos 01** and *Pos 02** (for unplanned measurements).

When you press the **Save** (2) pushbutton, then two consecutive positions will be updated – data from Ch.1 at the position you have selected, and data from Ch.2 at the subsequent position.

4.8 Displaying Results


Measurement results are selected using the Result | link in the Status Field (Line 3).

There are two displays: one to get an overview of the measurement results and one for calculation results (including a spectrum).

4.8.1 Overview

The **Overview** tab displays all the results of measurements in the project, see Fig.4.39. It is possible to include or exclude measurements, get details on smileys, and view annotations.

Fig. 4.39Viewing results using the **Overview** tab

The Status Field consists of the following information when viewing results:

Line 1: shows the same information as that described in "Status Field" on page 20

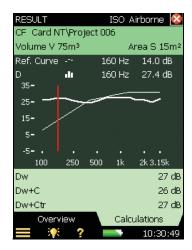
Line 2:

- Receiving Room Volume (linked to *Setup* menu)
- Partition Area (linked to *Setup* menu)

4.8.2 Calculations

The **Calculations** tab allows you to view the calculation results, including a spectrum, see Fig.4.40.

The Status Field consists of the same information as the **Overview** tab, see previous section.


The options for the reference spectrum parameter on the results view are:

- Reference Curve
- Deviations (between the reference curve and the main spectrum)
- Off

The options for the main spectrum parameter on the results view depend on the selected standard and task. For example, if the **Standard** parameter is set to *ISO 16283* and the **Task** parameter is set to *Airborne*, the options are:

- D
- Dn
- D_nT
- R'
- R

Fig. 4.40
Viewing calculation results using the
Calculations tab

In the area below the graph area, three single values can be shown. The options for these lines depend on the standard selected and the selection for the main spectrum == parameter.

The single values should be reported without decimals as shown in Fig.4.40. This also indicates that the reference curve has been shifted with 1 dB increments during the calculation (as stated for all standards except NEN and NEN'06).

To estimate the uncertainty of the results, the reference curve can be shifted in increments of 0.1 dB – see setting *Ref. Curve Increment* on page 31.

For Airborne and Façade measurements the result values will be up to 0.9 dB higher than the result values calculated with 1 dB Ref. Curve Increment.

For Impact measurements the result values will be up to 0.9 dB lower than the result values calculated with 1 dB Ref. Curve Increment.

If the difference is close to zero, then the result is more sensitive to small changes in the measurement conditions.

A yellow smiley is set at the single result values when Ref. Curve Increment is set to 0.1 dB, to indicate that the increment is not set as stated by the standard for reporting results.

4.9 Quality Indicators

Building acoustics software offers a wide range of status indicators and smileys. They are listed in Table 4.4.

 Table 4.4
 Overview of Status Indicators and Smileys

Status Code	Smiley	Explanation	Description
М	⊜	Manual data input	RT entered by user
В	⊜	Maximum background noise correction used	High background noise
N	•	No decay end found	The end of the decay cannot be determined because it does not end in the background noise
У	•	Background noise too high	Background noise is above the upper evaluation point, consider making serial measurements at the frequency bands with high background noise, see section 4.4.8
t	8	No decay start found	No decay start found
Y	*	Background noise too high	Background noise is above the lower evaluation point, consider making serial measurements at the frequency bands with high background noise, see section 4.4.8
Т	8	Maximum decay time too short	The lower evaluation point is beyond the decay time
Z	8	No decay found	The slope of the decay is positive, i.e., the reverberation time is negative
Р	8	Reverberation time too short	Less than two points in evaluation range
0	8	Excitation sound level too high	Overload (or wrong L1 and L2 level range)
F	(2)	Short reverberation time	B×T below 16 (B = filter bandwidth and T = reverberation time of detector)
R	(2)	T20 used (T30 unavailable)	T20 used (T30 unavailable)
n	9	High background noise	Background noise too close to level at lower evaluation point, consider making serial measurements at the frequency bands with high background noise, see section 4.4.8

 Table 4.4
 (Continued) Overview of Status Indicators and Smileys

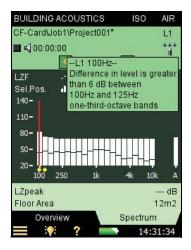
Status Code	Smiley	Explanation	Description
р	0	Short reverberation time	Less than four points in evaluation range
%	٥	Decay is bent	The difference between T20 and T30 is greater than 10%. (Recommended quality indicator from ISO 3382-2 Annex B)
k	(4)	Decay is non-linear	Correlation coefficient in linear regression is too low (less than 0.005 or ξ (Xi) > 10%)
b	(4)	Background noise correction used	Background noise correction used
m	(4)	Affected by manual input	Reverberation time entered by user
G	(a)	Receiving room volume limited in calculation	Used on the SS standard only
Н	0	No B2 measurements available	No B2 measurements available
~	•	L1: > 6 dB difference to adjacent band	Try other source or microphone positions, or change the optimization of the frequency response for the internal generator (<i>Setup</i> menu, under <i>Generator L1 and L2</i> , <i>Sound Source</i> parameters), or make Serial measurements (<i>Setup</i> menu, <i>Measurement Control L1</i> , <i>L2 and B2</i> , <i>Level Measurement Mode</i>) and select the bands with a big difference for serial measurements (see section 4.4.8)
^	9	L1 or L2: High Standard Deviation	The standard deviation in a frequency band is greater than twice the theoretical expected value.
S	(1)	Measured serially	The frequency band has been measured using band-limited noise.
i	(4)	Ref. Curve Increment 0.1 dB	You should use Ref. Curve Increment 1 dB when reporting results

Status Code	Smiley	Explanation	Description
*	8	L1 or L2 (not both) measured serially	Make sure all positions in L1 and L2 are measured serially.
S	8	Not all positions measured serially	Make sure all positions for the function are measured serially.
L	⊕	No ISO 16283LF project is found	Ensure that the Calculations > LF Project value is correct.
		An ISO 16283LF project is found, but the data are	Ensure that the Standard requirements have been met (see section 4.6).
		incomplete	The ISO 16283 or ISO 16283LF measurement must be remade with the correct Generator
		The L1 and L2 ISO 16283	parameter value.
		Generator parameter is	
		different from the ISO 16283LF	
		parameter	

Table 4.4 (Continued) Overview of Status Indicators and Smileys

If there is no status code, there is no smiley.

If any one of the status codes (there may be several) requires a red smiley, the red smiley will be displayed. If any one of the status codes requires a yellow smiley, but no red smiley, the yellow smiley will be displayed.


The explanation is shown if you tap on a smiley, see Fig.4.41.

Please note: Manual data input will overrule other smileys.

For the spectrum, small smileys are shown below the relevant frequency bands. Select the frequency band with the cursor and tap on the smiley in the cursor readout to see the explanation.

You can also view the spectrum table to get an overview of all the status codes, tap the y-axis and select *Spectrum Table* from the drop-down menu – see Fig. 4.27.

Fig. 4.41Viewing smiley explanation

4.10 Creating a New Project

You create a new project by selecting a Building Acoustics template.

If you already have a Building Acoustics project open and no unsaved data, you can press the **Reset** pushbutton and create a new project based on the current project template.

4.11 Reusing Data from an Existing Project

With Explorer it is possible to copy one or more functions from one project to the current project. For example, if you want to reuse or copy T2 from Project 001 to the current project:

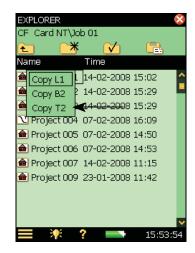

- 1) Ensure your current project is a building acoustics project (single or 2-channel).
- 2) Select Explorer to get a list of all projects.
- 3) Locate the Building Acoustics project from which you want to reuse data (in this example Project 001).
- 4) Tap on **Project 001** in the Explorer list and select **Reuse Data** from the drop-down list that appears, see Fig.4.42 (left).
- 5) A new drop-down list appears, showing the functions that are possible to reuse. Select **Copy T2** from the list, see Fig.4.42 (right). The function you copied (**T2**) appears in the current project.

Fig. 4.42Re-using data

Left: Tapping on Project 001 in the Explorer list

Right: Selecting the function to copy into your project

Please note:

If you are using the *Airborne* or *Façade* tasks, the following functions are available for copying:

- L1
- B2
- T2

If you are using the Impact task, only the following functions are available:

- B2
- T2

If the project already contains data for the function that you want to replace with reused data, then the reused function will overwrite the current data.

If the project already contains data for other functions, then the reused data you want to replace it with must match the data already there, e.g., the frequency range must be the same, otherwise you will get an error message.

4.12 Annotations and Signal Recording

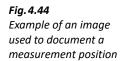
4.12.1 Project Annotations

The project can be annotated like other types of projects by clicking on it (in Explorer) and using the **Add Note to current Measurement** option from the drop-down menu that appears, or by pressing the **Commentary** pushbutton. A **Paperclip** con is displayed in the top line with access to the list of project annotations, see the example in Fig. 4.43.

Fig. 4.43
Example of an
overview display
showing annotations
and/or signal
recordings

4.12.2 Annotations on Measurement

In addition to the project annotation, you can annotate each measurement in the Overview. Tap the measurement in the Overview and select *View Annotations* for a list of annotations for the measurement in question. Using this list you can create, edit and delete annotations in the same way as you can on the Project Annotation list.


A selection of default metadata is included with the software in order to provide a starting point for metadata usage and cut down setup time.

Measurements with annotations are indicated by **1** in the Overview display, and by **1** (a smaller paperclip icon) on the **Overview** tab.

4.12.3 Adding Images to a Measurement

You can also attach an image (Type 2270 only). Similar to adding notes or comments, adding an image can also be done before, during or after saving the measurement by a tap **=** > **Add Image** (to the current measurement) in the list of options. The Viewfinder display will then appear showing what is coming through the camera lens. The camera has fixed focus and automatically adjusts the light sensitivity; you just have to position the analyzer so that the object you want to capture is visible in the Viewfinder and press the **Manual Event** pushbutton or tap on the icon to capture the image.

When captured, the image is presented as a still picture (see Fig.4.44) and you can save the captured image by pressing the **Save** (9) pushbutton (or by closing the Images view), or you can reject the image by pressing the **Back-erase** (9) pushbutton.

When finished, tap on the icon to return to the measurement screen. A **Paperclip** icon appears in the status field of the measurement and next to your project in Explorer. Tap it to see a list of all annotations in the project, and tap in the annotation to view the image.

4.12.4 Signal Recording

If you record sound while making the measurements (**Recording Control** set to *Automatic* under **Signal Recording** parameters) then the sound recording is saved together with the annotations on each measurement. This is also indicated by \blacksquare on the **Overview** tab (in the line for the measurement) and \blacksquare (a small paperclip icon) in the **Overview** tab.

To capture images each time you press the **Manual Event** pushbutton, tap > **Preferences** > **Images** > **Image Control** and select *Manual Event*. (The *Viewfinder* setting displays what is coming through the camera lens).

Signal Recording is only possible in one channel. (It will be *Ch. 2* if the measurement is setup for a 2-channel measurement).

In the overview in Fig.4.43 there are annotations and/or a signal recording on the first measurement (*Pos1*). Tap to get a list of annotations and/or sound recordings attached to the measurement on *Pos1*.

4.13 Exporting, Post-processing and Reporting

Measurement Partner Suite BZ-5503 is used for all communication between PC and analyzer. Connect the analyzer to the PC using the supplied USB Cable.

Use this software to:

- Transfer measurement data and templates from the analyzer to your PC, and vice versa
- Control measurements on the analyzer from the PC and display them on-line using the same user interface on the PC as on the analyzer
- View Building Acoustics results in the Archives
- Edit the project templates
- Organize data on the analyzer
- Export your building acoustics projects from archives to Qualifier Type 7830 for further postprocessing and for reporting
- · Create users on the analyzer
- · Upgrade software on the analyzer
- Install software licenses on the analyzer

Data transferred to the PC are organized in Archives.

For further information, please refer to the on-line help included with the relevant PC Software. This software is supplied on the Environmental Software CD-ROM (BZ-5298), which is included with the analyzer.

Chapter 5

Specifications

This chapter comprises the specifications that are needed for evaluation of instrument performance characteristics and proper use of the instrument. Some of the applicable sound level meter standards require additional technical documentation, in particular for pattern evaluation (type approval) purposes, but have no bearing on normal use. The additional technical documentation is given in a separate Brüel & Kjær instruction manual (BE 1712).

Specifications – Hand-held Analyzer Type 2250/2270 Platform

Microphone

SUPPLIED MICROPHONE

Type 4189: χ'' Prepolarized Free-field Microphone

or

Type 4190: ½" Free-field Microphone

or

Type 4966: ½" Prepolarized Free-field Microphone

Nominal Open-circuit Sensitivity: 50 mV/Pa (corresponding

to -26 dB re 1 V/Pa) \pm 1.5 dB **Capacitance:** 14 pF (at 250 Hz)

MICROPHONE PREAMPLIFIER ZC-0032 Nominal Preamplifier Attenuation: 0.25 dB

Connector: 10-pin LEMO

Extension Cables: Up to 100 m in length between the microphone preamplifier and Type 2250/2270, without

degradation of the specifications

MICROPHONE POLARIZATION VOLTAGE

Selectable between 0 V and 200 V

SELF-GENERATED NOISE LEVEL

Typical values at 23 °C for nominal microphone open-circuit sensitivity:

Weighting	Microphone	Electrical	Total
"A"	14.6 dB	12.4 dB	16.6 dB
"B"	13.4 dB	11.5 dB	15.6 dB
"C"	13.5 dB	12.9 dB	16.2 dB
"Z" 5 Hz-20 kHz	15.3 dB	18.3 dB	20.1 dB
"Z" 3 Hz−20 kHz	15.3 dB	25.5 dB	25.9 dB

Interface

KEYBOARD

Pushbuttons: 11 keys with backlight, optimized for measurement control and screen navigation

ON-OFF BUTTON

Function: Press 1 s to turn on; press 1 s to enter standby;

press for more than 5 s to switch off

STATUS INDICATORS

LEDs: Red, amber and green

DISPLAY

Type: Transflective back-lit colour touch screen 240×320

dot matrix

Colour Schemes: Five different – optimized for different

usage scenarios (day, night, etc.) **Backlight:** Adjustable level and on-time

USER INTERFACE

Measurement Control: Using pushbuttons on keyboard Setup and Display of Results: Using stylus on touch screen or

pushbuttons on keyboard

Lock: Keyboard and touch screen can be locked and unlocked

USB INTERFACE

Hardware Versions 1 to 3: USB 1.1 OTG Mini B socket Hardware Version 4: USB 2.0 OTG Micro AB and USB 2.0 Standard A sockets

MODEM INTERFACE

Connection to Internet through GPRS/EDGE/HSPA modem connected through:

- Compact Flash slot (hardware versions 1 − 3)
- USB Standard A Socket (hardware version 4)

Supports DynDNS for automatic update of IP address of host name

PRINTER INTERFACE

PCL printers, Mobile Pro Spectrum thermal printer or Seiko DPU S245/S445 thermal printers can be connected to USB socket

MICROPHONE FOR COMMENTARY

Microphone, which utilizes Automatic Gain Control (AGC), is incorporated in underside of analyzer. Used to create voice annotations for attaching to measurements

CAMERA (TYPE 2270 ONLY)

Camera with fixed focus and automatic exposure is incorporated in underside of analyzer

Used to create image annotations for attaching to measurements

Image Size:

Hardware versions 1 – 3: 640 x 480 pixels
 Hardware version 4:2048 x 1536 pixels
 Viewfinder Size: 212 x 160 pixels
 Format: JPG with exif information

LAN INTERFACE SOCKET

Hardware Versions 1 to 3 (Type 2270 only):

Connector: RJ45 MDISpeed: 10 MbpsProtocol: TCP/IP

Hardware Version 4 (Types 2250 and 2270):

• Connector: RJ45 Auto-MDIX

Speed: 100 MbpsProtocol: TCP/IP

INPUT SOCKET (2 - TYPE 2270 ONLY)

Connector: Triaxial LEMO Input Impedance: $\geq 1 \text{ M}\Omega$

Direct Input: Max. input voltage: \pm 14.14 V_{peak} **CCLD Input:** Max. input voltage: \pm 7.07 V_{peak}

CCLD Current/Voltage: 4 mA/25 V

TRIGGER SOCKET
Connector: Triaxial LEMO

Max. Input Voltage: $\pm~20~V_{peak}$ Input Impedance: > 47 $k\Omega$

Precision: ± 0.1 V
OUTPUT SOCKET

Connector: Triaxial LEMO
Max. Peak Output Level: ± 4.46 V

Output Impedance: 50Ω HEADPHONE SOCKET

Connector: 3.5 mm Minijack stereo socket

Max. Peak Output Level: ± 1.4 V

Output Impedance: 32 Ω in each channel

Power

EXTERNAL DC POWER SUPPLY REQUIREMENTS

Used to charge the battery pack in the analyzer **Voltage:** 8 – 24 V DC, ripple voltage < 20 mV

Current Requirement: Min. 1.5 A

Power Consumption: < 2.5 W, without battery charging, <

10 W when charging

Cable Connector: LEMO Type FFA.00, positive at centre pin

EXTERNAL AC MAIN SUPPLY ADAPTOR

Part No.: ZG-0426

Supply Voltage: 100 – 120/200 – 240 V AC; 47 – 63 Hz

Connector: 2-pin IEC 320

BATTERY PACK

Part No.: QB-0061 Rechargeable Li-Ion battery

Voltage: 3.7 V

Capacity: 5200 mAh nominal Typical Operating Time:

- Single-channel: > 11 h (screen backlight dimmed); > 10 h (full screen backlight)
- 2-channel: > 10 h (full screen backlight)

Use of external interfaces (LAN, USB, Wi-Fi) will decrease battery operating time

Battery Cycle Life: > 500 complete charge/discharge cycles Battery Aging: Approximately 20% loss in capacity per year Battery Indicator: Remaining battery capacity and expected working time may be read out in % and in time

Battery Fuel Gauge: The battery is equipped with a built-in fuel gauge, which continuously measures and stores the actual battery capacity in the battery unit

Charge Time: In analyzer, typically 10 hours from empty at ambient temperatures below 30 °C. To protect the battery, charging will be terminated completely at ambient temperatures above 40 °C. At 30 to 40 °C charging time will be prolonged. With external charger ZG-0444 (optional

accessory), typically 5 hr

Note: It is not recommended to charge the battery at temperatures below $0 \,^{\circ}\text{C}$ (32 $^{\circ}\text{F}$) or over 50 $^{\circ}\text{C}$ (122 $^{\circ}\text{F}$). Doing this will reduce battery lifetime

CLOCK

Back-up battery powered clock. Drift < 0.45 s per 24 hr

period

Storage

INTERNAL FLASH-RAM (NON-VOLATILE)

For user setups and measurement data

Hardware versions 1 – 3: 20 MB

Hardware version 4: 512 MB

EXTERNAL SECURE DIGITAL MEMORY CARD

SD and SDHC Card: For store/recall of measurement data

EXTERNAL COMPACT FLASH MEMORY CARD (Hardware

Versions 1 – 3 Only)

CF Card: For store/recall of measurement data

USB MEMORY STICK (Hardware version 4 only)

For store/recall of measurement data

Environmental

WARM-UP TIME

From Power Off: <2 minutes

From Standby: <10 seconds for prepolarized microphones

WEIGHT AND DIMENSIONS

650 g (23 oz) including rechargeable battery $300\times93\times50$ mm (11.8 \times 3.7 \times 1.9") incl. preamplifier and microphone

User Interface

USERS

Multi-user concept with login. Users can have their own settings with jobs and projects totally independent of other users

PREFERENCES

Date, Time and Number formats can be specified per user

LANGUAGE

User Interface in Catalan, Chinese (People's Republic of China), Chinese (Taiwan), Croatian, Czech, Danish, English, Flemish, French, German, Hungarian, Japanese, Italian, Korean, Polish, Portuguese, Romanian, Russian, Serbian, Slovenian, Spanish, Swedish, Turkish and Ukrainian

HELP

Concise context-sensitive help in Chinese (People's Republic of China), English, French, German, Italian, Japanese, Polish, Romanian, Serbian, Slovenian, Spanish and Ukrainian

UPDATE OF SOFTWARE

Update to any version (from 4.0 and up) using BZ-5503, included, through USB or update via Internet:

REMOTE ACCESS

Connect to the analyzer using Measurement Partner Suite BZ-5503, using Measurement Partner Field App (iOS or Android smartphone app), using the 2250/2270 SDK (Software Development kit), using a REST interface through HTTP or using an Internet browser supporting JavaScript. The connection is password protected

Two levels of protection:

- · Guest level: for viewing only
- Administrator level: for viewing and full control of the analyzer

CLOUD

Connect to Measurement Partner Cloud on cloud.bksv.com for transferring data to an archive in the cloud for storage or easy synchronization with Measurement Partner Suite BZ-5503

Specifications – Building Acoustics Software BZ-7228

Specifications apply to BZ-7228 unless otherwise stated. BZ-7229 2-channel Option is for Type 2270 only

STANDARDS

Conforms with the relevant parts of the following:

- IEC 61672 -1 (2013) Class 1
- IEC 60651 (1979) plus Amendment 1 (1993–02) and Amendment 2 (2000–10), Type 1
- ANSI S1.4–1983 plus ANSI S1.4A–1985 Amendment, Type 1
- ANSI/ASA S1.4-2014, Class 1
- IEC 61260-1 (2014), 1/1-octave Bands and 1/3-octave Bands, Class 1
- IEC 61260 (1995–07) plus Amendment 1 (2001–09), 1/1octave Bands and 1/3-octave Bands, Class 0

- ANSI S1.11–1986, 1/1-octave Bands and 1/3-octave Bands, Order 3, Type 0–C
- ANSI S1.11-2004, 1/1-octave Bands and 1/3-octave Bands, Class 0
- ANSI/ASA S1.11–2014 Part 1, 1/1-octave Bands and 1/3-octave Bands, Class 1
- ISO 16283, ISO 140, SS, DIN, Önorm, BS, BREW, Sia, UNI, NF-S31, NBE, NEN, NEN'06, ASTM, see tables under "Building Acoustics Standards" in Appendix B

Note: The International IEC Standards are adopted as European standards by CENELEC. When this happens, the letters IEC are replaced with EN and the number is retained. Type 2250/2270 also conforms to these EN Standards

CHANNELS (TYPE 2270 ONLY)

All measurements are made from either Ch. 1 or Ch. 2 or both simultaneously

TRANSDUCERS

Transducers are described in a transducer database with information on Serial Number, Nominal Sensitivity, Polarization Voltage, Free-field Type, CCLD required, Capacitance and additional information. The analogue hardware is set up automatically in accordance with the selected transducer

CORRECTION FILTERS

For microphone Types 4189, 4190, 4191, 4192, 4193, 4950, 4952, 4964 and 4966, BZ-7228 is able to correct the frequency response to compensate for sound field and accessories

Broadband Analysis

DETECTORS

A- and C-weighted: Broadband detectors with Fast

exponential time weighting

Overload Detector: Monitors the overload outputs of all the

frequency weighted channels

Underrange Detector: Monitors the under range of all the frequency weighted detectors. Underrange is set if level is

below lower limit of Linear Operating Range

Type 2270: Detectors available for both Ch. 1 and Ch. 2

MEASUREMENTS

L_{AF} and L_{CF} for Display as Numbers or Quasi-analogue Bars

MEASURING RANGES

When using Microphone Type 4189:

Dynamic Range: From typical noise floor to max. level for a

1 kHz pure tone signal, A-weighted: Single Range: 16.6 to 140 dB High Range: 28.5 to 140 dB Low Range: 16.6 to 110 dB

Primary Indicator Range: In accordance with IEC 60651, A-

weighted:

Single Range: 23.5 to 123 dB High Range: 41.7 to 123 dB Low Range: 23.5 to 93 dB

Linear Operating Range: In accordance with IEC 61672, A-

weighted: 1 kHz:

Single Range: 24.8 to 140 dB High Range: 43.0 to 140 dB Low Range: 24.8 to 110 dB

Frequency Analysis

CENTRE FREQUENCIES

1/1-octave Band Centre Frequencies: 63 Hz to 8 kHz 1/3-octave Band Centre Frequencies: 50 Hz to 10 kHz

MEASURING RANGES

When using Microphone Type 4189:

Dynamic Range: From typical noise floor to max. level for a

pure tone signal at 1 kHz 1/3-octave:

Single Range: 1.1 to 140 dB High Range: 11.3 to 140 dB Low Range: 1.1 to 110 dB

Linear Operating Range: In accordance with IEC 61260:

Single Range: \leq 20.5 to 140 dB High Range: \leq 39.1 to 140 dB Low Range: \leq 20.5 to 110 dB

Internal Generator

Built-in pseudo-random noise generator **Spectrum:** Selectable Pink or White

Crest Factor:

Pink Noise: 4.4 (13 dB) White Noise: 3.6 (11 dB)

Bandwidth: Follows measurement frequency range Lower Limit: 50 Hz (1/3-oct.) or 63 Hz (oct.)
Upper Limit: 10 kHz (1/3-oct.) or 8 kHz (oct.)
Output Level: Independent of bandwidth

Max.: 1 V_{rms} (0 dB)

Gain Adjustment: -80 to 0 dB

When bandwidth is changed, the level for all bands is automatically adjusted to comply with the set output level

Correction Filters: For sound sources Type 4292-L, Type 4295 and Type 4296: Flat or Optimum

Turn-on Time and Turn-off Time: Equivalent to RT = 70 ms

Repetition Period: 175 s

Output Connector: Output Socket Control: See Measurement Control

External Generator

Selectable as alternative to Internal Generator For controlling external noise generator

Levels: 0 V (Generator off), 3.3 V (Generator on)

Rise-time and Fall-time: $10 \, \mu s$ Control: See Measurement Control

Measurements

Measurements are done at a number of positions and categorized in functions (L1 for Source Room levels, L2 for Receiving Room levels, B2 for Receiving Room Background noise levels and T2 for Receiving Room Reverberation Time measurements)

LEVELS L1, L2 AND B2

L_{ZF} spectrum for display only

L_{Zeq} in 1/1-octave or 1/3-octave bands

L1 and L2 simultaneously or as single channels

Averaging time: 1 s to 1 hr

Range (L1 and L2 simultaneously only): Autorange or

manually set to High Range or Low Range

Averaging: Up to 10 source positions each with up to 10 measurement positions or up to 100 measurements may be

averaged

Status Indications: Overload, under range, etc.

Crosstalk:

5 Hz – 10 kHz <–110 dB 10 kHz – 20 kHz <–100 dB

REVERBERATION TIME T2

T20 and T30 in 1/1-octave or 1/3-octave bands **Decays:** L_{Zeq} spectra sampled at 5 ms intervals

Evaluation Range: -5 to -25 dB for T20 and -5 to -35 dB for

T30

Measurement Time: Automatic selection of measurement time for the decays based on the actual reverberation time of the room

Maximum Measurement Time: From 2 to 20 s

Averaging: T20 and T30 measurements can be averaged

(arithmetic averaging or ensemble averaging)

T20 and T30 Calculation: From slope in evaluation range

Slope Estimation: Least squares approximation Quality Indicators: Quality indicators with status

information like Overload, Curvature in %, etc.; extensive list of Status information

Quality Indicators are available on reverberation time spectra for each frequency band, and as overall quality indicators for each measurement position and for the averaged result

Reverberation Time Range: Max. 30 s, min. 0.1-0.7 s, depending on bandwidth and centre frequency **Manual Data Entry:** A T2 value may be entered in any frequency band of a measured spectrum

Measurement Displays

OVERVIEW

Table of measurement positions for each function (L1, L2, B2 or T2) with readout for selectable frequency band on each position together with quality indicator.

Positions can be included/excluded from average

SOUND LEVEL SPECTRUM

LZF spectrum plus A and C broadband bars L_{Zeq} spectrum for L1@Pos, L2@Pos, B2@Pos, L1, L2, B2, L1-L2, L2-B2

Y-axis: Range: 5, 10, 20, 40, 60, 80, 100, 120, 140 or 160 dB. Auto- zoom or auto scale available

Cursor: Readout of selected band quality indicator for each frequency band

REVERBERATION TIME SPECTRUM

One or two spectra can be displayed

Y-axis: Range: 0.5, 1, 2, 5, 10 or 20 s. Auto zoom available **Cursor:** Readout of selected band quality indicator for each frequency band

SPECTRUM TABLE

One or two spectra can be displayed in tabular form

DECAY

Decay curve for a position or the room average available for each frequency band (if Ensemble Average selected)
Display of evaluation range and regression line
Readout of Curvature in %

Y-axis: Range: 5, 10, 20, 40, 60, 80, 100, 120, 140 or 160 dB. Auto zoom or auto scale available

Result Displays

OVERVIEW

Table of measurement positions for all functions (L1, L2, B2 or T2) with readout of quality indicators.

Positions can be included/excluded from result

CALCULATIONS

Shows the sound reduction index (spectrum and weighted) according to the selected standard, along with the reference curve (if any), or deviations (from the reference curve). See Appendix B

Measurement Control

Measurement Sequence: Supports measuring:

- at all microphone positions before using another source
- at a microphone position for all sources before measuring at a new position
- at subsequent microphone positions without source information
- at manually selected source and microphone positions Measurements are started manually and can be automatically stored on completion of measurement Generator (L1, L2 and T2): The noise generator is turned on and off automatically

Escape Time: 0 to 60 s **Build-up Time:** 1 to 10 s

The generator can be turned on and off manually for checking equipment and sound levels

EXCITATION T2

Interrupted Noise: Measurements are started manually and can be automatically stored on completion of measurement Number of Decays per Measurement: 1 to 100, ensemble averaged into one decay

Impulse: Manual start of first measurement. When level (say from starter pistol) exceeds the user-selected trigger level, the decay is recorded and backwards integration performed (Schroeder method). The trigger can then be armed automatically for measuring at the next position

Signal Recording: Recording of the Z-weighted measured signal can be done at each position *

^{*} Signal recording requires an SD card or USB stick for data storage and a license for Signal Recording Option BZ-7226

Measurement Status

On Screen: Information such as overload, awaiting trigger and running/paused are displayed on screen as icons or text Traffic Light: Red, yellow and green LEDs show measurement status and instantaneous overload as follows:

- Yellow LED flashing every 5 s = stopped, ready to measure
- Green LED flashing slowly = awaiting trigger or calibration signal
- Green LED on constantly = measuring
- Yellow LED flashing slowly = paused, measurement not stored
- Red LED flashing quickly = intermittent overload, calibration failed

Calibration

Initial calibration is stored for comparison with later calibrations

Acoustic: Using Sound Calibrator Type 4231 or custom calibrator. The calibration process automatically detects the calibration level when Sound Calibrator Type 4231 is used **Electrical**: Uses internally generated electrical signal combined with a typed-in value of microphone sensitivity **Calibration History**: Up to 20 of the last calibrations made are listed and can be viewed on the instrument

Signal Monitoring

Input signal A-, C- or Z-weighted can be monitored using an earphone/headphones connected to the headphone socket

Headphone Signal: Input signal can be monitored using this socket with headphones/earphones **Gain Adjustment:** –60 dB to 60 dB

Voice Annotations

Voice annotations can be attached to the building acoustics project and to measurements at each position

Playback: Playback of voice annotations or signal recordings can be listened to using earphone/headphones connected to the headphone socket

Gain Adjustment: -60 to 0 dB

Text and Image Annotations

Text and image (Type 2270 only) annotations can be attached to the building acoustics project and to measurements at each position

Data Management

Project Template: Defines the display and measurement setups

Project: Measurement data for all positions defined in source room (L1) and in receiving room (L2, B2 and T2) are stored with the Project Template

Reuse of data: Data for L1, B2 or T2 in one project can be reused in another project

Job: Projects are organized in Jobs

Explorer facilities for easy management of data (copy, cut, paste, delete, rename, view data, open project, create job, set default project name)

Software Specifications – Measurement Partner Suite BZ-5503

BZ-5503 is included with Types 2250, 2250-L and 2270 for easy synchronization of setups and data between the PC and hand-held analyzer. BZ-5503 is supplied on ENV DVD BZ-5298

PC REQUIREMENTS

Operating System: Windows® 7, 8.1 or 10 (all in 32-bit or 64-bit versions)

Recommended PC:

- Intel® Core™ i3
- Microsoft®.NET 4.5
- 2 GB of memory
- Sound card
- DVD drive
- At least one available USB port
- Solid State Drive

ON-LINE DISPLAY OF TYPE 2250/2250-L/2270 DATA

Measurements on the analyzer can be controlled from the PC and displayed on-line with the PC, using the same user interface on the PC as on the analyzer

Display: 1024 × 768 (1280 × 800 recommended)

DATA MANAGEMENT

Explorer: Facilities for easy management of analyzers, Users, Jobs, Projects and Project Templates (copy, cut, paste, delete, rename, create)

Data Viewer: View measurement data (content of projects) **Synchronization:** Project Templates and Projects for a specific user can be synchronized between PC and analyzer and between local and cloud archives. Measurement Partner Suite BZ-5503 merges Measurement Partner Field App annotations with the corresponding analyzer project

IISFRS

Users of Type 2250/2270 can be created or deleted

EXPORT FACILITIES

Excel®: Projects (or user-specified parts) can be exported to Microsoft® Excel® (Excel 2003 – 2016 supported)

Brüel & Kjær Software: Projects can be exported to Predictor-LimA Type 7810, Acoustic Determinator Type 7816, Protector Type 7825, Qualifier (Light) Type 7830 (7831), PULSE Mapping for Hand-held Sound Intensity Type 7962/7752/7761 or PULSE Reflex

POST-PROCESSING

Measurement Partner Suite is a suite of modules, including post-processing tools for data acquired with Type 2250/2270. The following post-processing modules are

Type 2250/2270. The following post-processing modules are available:

- Logging Module BZ-5503-A
- Spectrum Module BZ-5503-B
- WAV File Analysis Module BZ-5503-C

These modules help to assess logging data and measured spectra, such as calculating contribution from markers on a logging profile or correcting spectra for background noise

* Not all data are available in all exports. The data exported are dependent on the type and target of the export.

HAND-HELD ANALYZER SOFTWARE UPGRADES AND LICENSES

The software controls analyzer software upgrades and licensing of the analyzer applications

INTERFACE TO HAND-HELD ANALYZER

USB, LAN or Internet connection

LICENSE MOVER

To move a license from one analyzer to another use BZ-5503, together with License Mover VP-0647

LANGUAGE

User Interface in Chinese (People's Republic of China), Chinese (Taiwan), Croatian, Czech, Danish, English, Flemish, French, German, Hungarian, Japanese, Italian, Korean, Polish, Portuguese, Romanian, Russian, Serbian, Slovenian, Spanish, Swedish, Turkish and Ukrainian

HELP

Concise context-sensitive help in English

Specifications – Signal Recording Option BZ-7226

Signal Recording Option BZ-7226 is enabled with a separate license. It works with all the software for Type 2250/2270: Sound Level Meter, Frequency Analysis, Logging Software, Enhanced Logging Software and Reverberation Time Software

For data storage, Signal Recording requires either:

- SD Card
- CF Card: Hardware versions 1 3
- USB Memory Stick: Hardware version 4

RECORDED SIGNAL

A-, B-, C- or Z-weighted signal from the measurement transducer

AUTOMATIC GAIN CONTROL

The average level of the signal is kept within a 40 dB range, or the gain can be fixed

PLAYBACK

Playback of signal recordings can be listened to using the earphone/headphones connected to the headphone socket

SAMPLING RATE AND PRE-RECORDING

The signal is buffered for the pre-recording of the signal. This allows the beginning of events to be recorded even if they are only detected later.

Sampling Rate (kHz)	Maximum Pre-recording (s)	Sound Quality	Memory (KB/s)
8	470	Low	16
16	230	Fair	32
24	150	Medium	48
48	70	High	96

RECORDING FORMAT

The recording format is 16- or 24-bit wave files (extension .WAV) attached to the data in the project, easily played-back afterwards on a PC using BZ-5503. Calibration information is stored in the .WAV file, allowing PULSE to analyse the recordings

Specifications – Qualifier Type 7830

STANDARDS

See Tables 1 and 2 under "Building Acoustics Standards" in Appendix B

LANGUAGES

English, French, German, Italian and Spanish

VIEWS

Result Level Views: A collection of views showing the resulting single values, reduction curve and underlying average curves (L1, L2, B2 and T20/T30)

Average Level Views: Each of the parameters (L1, L2 and B2) has a corresponding view showing all of the measurement curves included in the average calculation and a view of the resulting average curve.

In T20/T30 Average mode, it is possible to see all of the T20/T30s included in the average calculation. In Ensemble Average mode, it is possible to see the averaged 3D and averaged single frequency decay curves. Both modes gives the user the ability to see the resulting T20/T30 spectrum **Position Level Views**: Each of the level measurements (L1, L2 and B2) can be viewed as a spectrum. In addition, the T2 reverberation measurement can be viewed as 3D-multispectra and as single frequency decay curves. Furthermore it is possible to see the calculated T20/T30 spectrum

Data Sheets: All of the measurement and the most relevant intermediate and final results can be viewed as values in a table (not decays)

CURSOR READ-OUT

All curves have cursor read-out

MANUAL INPUT

Allows graphical input and modification of the regression line in reverberation decay curves. Calculated sound reduction curves can also be adjusted graphically (The impact on the single value index is shown simultaneously). To give maximum flexibility, position, average and calculated data can be overridden by manually inputting data in the data sheets

CALCULATIONS

Supports calculation of insulation and reverberation tasks. Insulation calculations include airborne and impact sound insulation (lab/field). In addition, airborne facade calculation is supported.

REPORT GENERATION

Based on document templates it is possible to make reports conforming to the supported standards

OUTPUT

Relevant views and sheets can be printed or exported to the clipboard. Text or graphs may be transferred to word processors in RTF (Rich Text Format)

HELP

Online context-sensitive and user guide

DATA TRANSFER

Via USB using Measurement Partner Suite BZ-5503

MINIMUM PC

- Windows® 7, 8 or 8.1 (all in 32-bit or 64-bit versions)
- Intel[®] Core[™] i3
- 2 GB RAM
- · Sound card
- DVD drive
- Mouse

Ordering Information

BUILDING ACOUSTICS KITS

The following kits are designed to provide Type 2250 and Type 2270 users with the necessary accessories to perform single-channel building acoustics measurements:

BZ-7228-200 Building Acoustics Kit for single-channel airborne sound insulation,

including:

 BZ-7228: Building Acoustics Software (includes Reverberation Time Software BZ-7227)

• Type 2734-A: Power Amplifier

 Type 4292-L: OmniPower Sound Source (tripod and carrying bag KE-0462 included)

 AO-0523-D-100: Signal Cable, Triaxial LEMO to XLR3M, 10 m (33 ft)

 AQ-0673: Speaker Cable, speakON® 4-pin (M) to speakON 4-pin (M),10 m (33 ft)

Note: Flight case KE-0449 for OmniPower sound source must be purchased separately

• KE-0364: Carrying bag for Type 4292-L Tripod

UA-0801: Tripod for Type 2250

SOftware Modules

BZ-7228-300 Building Acoustics Kit for single-

channel airborne or impact sound insulation, including the same items as

Measurement Partner Suite, Spectrum

BZ-7228-200 and:

• Type 3207: Tapping Machine

• UA-1477: Battery Kit for Type 3207

Type 2270 users (not Type 2250 users) can upgrade a BZ-7228-200 or BZ-7228-300 kit to perform 2-channel building acoustics measurements with a combination the following accessories, depending on your measurement scenario:

• BZ-7229: 2-Channel Option

• Type 4189: Prepolarized Free-field ½" Microphone

 AO-0697-D-100: Microphone Extension Cable, 10-pin LEMO,

10 m (33 ft)

B7-5503-B

• AR-0199: Flat Cable, 10-pin LEMO, 0.5 m (1.64 ft)

• JP-1041: Dual 10-pole Adaptor Cable

• UA-0801: Lightweight Tripod

• UA-1317: ½" Microphone Holder

• ZC-0032: Microphone Preamplifier

For help determining the type and quantity of required accessories, please contact your local Brüel & Kjær sales representative

Software and Accessories Available Separately

301tware Module	:5	DZ-3303-D	Measurement Farther Suite, Spectrum
BZ-7228	Building Acoustics Software for Types		Module
	2250 and 2270	BZ-5503-C	Measurement Partner Suite, WAV file
BZ-7228-100	Upgrade of BZ-7227 Reverberation		analysis module
	Time software to BZ-7228 Building	Type 7830	Qualifier
	Acoustics Software	MEASUREMENT A	ACCESSORIES
BZ-7229	2-channel Option Type 2270	Type 3923	Rotating Microphone Boom
BZ-7223	Frequency Analysis Software	Type 4231	Sound Level Calibrator
BZ-7224	Logging Software	AO-0440-D-015	Signal Cable, LEMO to BNC, 1.5 m (5 ft)
BZ-7225	Enhanced Logging Software	AO-0646	Sound Cable, LEMO to Minijack, 1.5 m
BZ-7225-UPG	Upgrade from Logging Software BZ-		(5 ft)
	7224 to Enhanced Logging Software BZ-	AO-0697-030	Microphone Extension Cable, 10-pin
D7 7006	7225 (does not include memory card)		LEMO, 3 m (10 ft)
BZ-7226	Signal Recording Option	AO-0697-100	Microphone Extension Cable, 10-pin
BZ-7227	Reverberation Time Software		LEMO, 10 m (33 ft)
BZ-7230	FFT Analysis Software	AR-0199	Flat Cable, 10-pin LEMO, 0.5 m (1.64 ft)
BZ-7231	Tone Assessment Option	JP-1041	Dual 10-pole Adaptor
BZ-7234	Low Frequency Option	KE-0449	Flight case for OmniPower Sound
PC SOFTWARE			Source Type 4292-L
BZ-5503-A	Measurement Partner Suite, Logging	UA-0587	Tripod
	Module	UA-0801	Lightweight Tripod
		UA-1317	½" Microphone Holder

UA-1404	Outdoor Microphone Kit	BZ-5503-G-012	Measurement Partner Cloud	
UA-1476	Wireless Remote Control Unit		professional, enterprise cloud storage	
UL-0256	Wireless Audio System kit, B&K		subscription for one year	
	specified	AO-1449-D-010	LAN Cable	
UL-0256-A	Wireless Audio System (AKG WMS 470	UL-0250	USB to RS-232 Converter	
	Set,	UL-1050	Micro USB Wi-Fi dongle	
	RF Band VII-50 mW)	SOUND SOURCES	-	
UL-1009	SD Memory Card for Hand-held	Type 4292-L	OmniPower Sound Source	
	Analyzers	Type 4295	OmniSource Sound Source	
UL-1013	CF Memory Card for Hand-held	Type 3207	Tapping Machine	
	Analyzers, for hardware versions $1-3$	Type 2734-A	Power Amplifier	
UL-1017	SDHC Memory Card for Hand-held	Type 2734-B	Power Amplifier with Wireless Audio	
	Analyzers	1,700 2731 2	System UL-0256	
ZG-0444	Charger for Battery Pack QB-0061	Forfurtherinform	•	
Brüel & Kjær supplies a wide range of microphones and		For further information please refer to the Sound Sources for Building Acoustics product data, BP 1689		
microphone acce	essories. Please contact your local	building Acoustics	s product data, br 1005	
Brüel & Kjær office for more information regarding the		Type 4224	Portable Battery & Mains Powered	
different types a	nd their use, or visit the website at	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sound Source	
www.bksv.com			Journa Journe	

www.bksv.com. INTERFACING

BZ-5503-D	Measurement Partner Field App for iC
	and Android (free download at App
	Store and Play)
BZ-5503-E	Measurement Partner Cloud entry
	level, free cloud storage
BZ-5503-F-012	Measurement Partner Cloud basic,
	basic cloud storage subscription for
	one year

Service Products

accredited Calibration

2250-J-CEI	Initial Calibration
2250-J-CEF	Periodic Calibration
2270-K-CEI	Initial Calibration
2270-K-CEF	Periodic Calibration

Type 4224 product data, BP 0066

HARDWARE MAINTENANCE

2250/2270-EW1 Extended Warranty, one year extension

For further information please refer to the Sound Source

(Types 2250/2270)

Compliance with Environmental Standards

€ <u>®</u> <u>≅</u>	The CE marking is the manufacturer's declaration that the product meets the requirements of the applicable EU directives RCM mark indicates compliance with applicable ACMA technical standards – that is, for telecommunications, radio communications, EMC and EME China RoHS mark indicates compliance with administrative measures on the control of pollution caused by electronic information products according to the Ministry of Information Industries of the People's Republic of China WEEE mark indicates compliance with the EU WEEE Directive
Safety	EN/IEC 61010-1, ANSI/UL 61010-1 and CSA C22.2 No.1010.1: Safety requirements for electrical equipment for measurement, control and laboratory use
EMC Emission	EN/IEC 61000-6-3: Generic emission standard for residential, commercial and light industrial environments EN/IEC 61326: Electrical equipment for measurement, control and laboratory use – EMC requirements CISPR 22: Radio disturbance characteristics of information technology equipment. Class B Limits IEC 61672-1, IEC 61260, IEC 60651 and IEC 60804: Instrumentation standards Note: The above is only guaranteed using accessories listed in this document
EMC Immunity	EN/IEC 61000-6-2: Generic standard – Immunity for industrial environments EN/IEC 61326: Electrical equipment for measurement, control and laboratory use – EMC requirements IEC 61672-1, IEC 61260, IEC 60651 and IEC 60804: Instrumentation standards Note: The above is only guaranteed using accessories listed in this document
Temperature	IEC 60068–2–1 & IEC 60068–2–2: Environmental Testing. Cold and Dry Heat Operating Temperature: –10 to +50 °C (14 to 122 °F) Storage Temperature: –25 to +70 °C (–13 to 158 °F)
Humidity	IEC $60068-2-78$: Damp Heat: 93% RH (non-condensing at $+40$ °C (104 °F)). Recovery time $2\sim4$ hours
Mechanical	Non-operating: IEC $60068-2-6$: Vibration: 0.3 mm , 20 m/s^2 , $10-500 \text{ Hz}$ IEC $60068-2-27$: Bump: $1000 \text{ bumps at } 400 \text{ m/s}^2$ IEC $60068-2-27$: Shock: 1000 m/s^2 , 6 directions
Enclosure	IEC 60529 (1989): Protection provided by enclosures: IP 44*

^{*} With preamplifier, extension cable or protection plug connected to the top socket and the hinged cover protecting the bottom connectors.

Appendix A

Setup Parameters

This appendix describes all the setup parameters included in a template. The parameters are applicable to Types 2250 and 2270, unless otherwise stated.

A.1 Input (For Type 2270 Only)

Table A.1 Input parameters

Parameter	Values	Comment
Measure L1 and L2	Simultaneously Separately	Please note: If Task = Façade and Generator Type = Off (Traffic Noise) then Simultaneously is the only option. This parameter requires a BZ-7229 license
Input for L1	Ch. 1 Ch. 2 Ch. 1 and Ch. 2	Select input channel for L1 measurements. Please note: If Measure L1 and L2 = Simultaneously then Ch.1 is the only option. Ch. 1 and Ch. 2 Simult. requires a BZ-7229 license
Input for L2	Ch. 1 Ch. 2 Ch. 1 and Ch. 2	Select input channel for L2 measurements. Please note: If Measure L1 and L2 = Simultaneously then Ch. 2 is the only option. Ch. 1 and Ch. 2 Simult. requires a BZ-7229 license
Input for B2	Ch. 1 Ch. 2 Ch. 1 and Ch. 2	Select input channel for B2 measurements. Ch. 1 and Ch. 2 Simult. requires a BZ-7229 license
Input for T2	Ch. 1 Ch. 2 Ch. 1 and Ch. 2	Select input channel for T2 measurements. Ch. 1 and Ch. 2 Simult. requires a BZ-7229 license
Autorange	Off On	Set to <i>On</i> for autoranging Ch.1 and Ch.2 or set to <i>Off</i> for manually setting the range. This is relevant for Measure L1 and L2 = <i>Simultaneously</i> or for Input set to <i>Ch.1</i> and <i>Ch.2 Simult.</i> requires a BZ-7229 license

A.2 Input

Table A.2 Input parameters

Parameter	Values	Comment
Input	Top Socket Rear Socket	Determines whether the input is taken from the top socket or the rear socket (Input' on connector panel). Connect your transducer to this socket Please note: Sound Field and Windscreen corrections can be added to both the Top Socket and the Rear Socket (Input parameters)
Sound Field Correction	Free-field Diffuse-field Pressure- field	Select a correction matching the sound field of your measurements, i.e., you can make correct measurements in a diffuse field using a Type 4189 free-field microphone, by selecting <i>Diffuse-field</i> correction. **Pressure-field* is available for Type 4192 only. Building Acoustics measurements require the *Diffuse-field* setting. No correction is made for unknown transducers
Windscreen Auto Detect	On Off	Automatic detection of UA-1650 windscreen when mounted on the ZC-0032 microphone preamplifier. The preamplifier should be connected to the top socket, if necessary using a microphone extension cable. This parameter is only available for microphone types using ZC-0032
Windscreen Correction	None UA-1650 UA-1404	If Windscreen Auto Detect is set to Off, you can manually select a windscreen correction suitable for the windscreen in use. Correction is automatically made for the windscreen on Type 4952. No correction is made for unknown transducers
Range Setting	High Range Low Range	Set Range Setting to <i>High Range</i> or <i>Low Range</i> as required. The difference between the two settings is 30 dB. <i>High Range</i> can be used to measure up to the max. input level. This setting is relevant for Measure L1 and L2 = <i>Simultaneously</i> and Autorange = <i>Off</i> , or for Input set to <i>Ch.1</i> and <i>Ch.2</i> and Autorange = <i>Off</i> (Type 2270 only and requires a BZ-7229 license)

A.3 Standard

Table A.3 Standard parameters

Parameter	Values	Comment
Standard	ISO 16283 ISO 16283LF SS DIN ÖNORM BS BREW SIA UNI NF NBE CTE NEN NEN'06 ASTM ISO 140	
Task	Airborne Impact Façade	

A.4 Frequency Range

Table A.4 Frequency Range parameters

Parameter	Values	Comment
Bandwidth	1/1-octave 1/3-octave	Bandwidth of frequency analysis
Bottom Frequency	50 Hz to Top Frequency	 1/1-octave: 63 Hz – 8 kHz 1/3-octave: 50 Hz – 10 kHz Please note: The settings of Bottom and Top Frequency control the frequency range of the frequency analysis and the internal noise generator.
Top Frequency	Bottom Frequency to 10 kHz	1/1-octave: 63 Hz – 8 kHz 1/3-octave: 50 Hz – 10 kHz

The Frequency Range parameters are automatically set in accordance with the chosen standard; however, the range can be set wider than that required by the standard.

A.5 Measurement Control L1, L2 and B2

Table A.5Measurement Control L1, L2 and B2 parameters

Parameter	Values	Comment
Planned Measurement	Off On	For Planned Measurement = <i>On</i> , you can define the number of source positions and microphone positions per source – otherwise the measurements are made from <i>Pos.</i> 1 and forward
No. of Source Positions	1 to 10	Only for Planned Measurement = <i>On</i>
L1: No. of Micr. Pos. per Source	1 to 10	Only for Planned Measurement = <i>On</i> The number can be increased after the first measurements have been saved – but not decreased below the last measurement position
L2: No. of Micr. Pos. per Source	1 to 10	Only for Planned Measurement = <i>On</i> The number can be increased after the first measurements have been saved – but not decreased below the last measurement position
Increment	Source First Mic. Position First Manually	Only for Planned Measurement = <i>On</i> Defines the order in which you want to do your measurements
Preset Time	<i>00:00:00</i> to <i>01:00:00</i>	
Automatic Save	Off On	
Level Measurement Mode	Parallel Serial Combined	Parallel measures all bands in the Spectrum simultaneously, Serial measures selected bands, and Combined first measures Parallel and then Serial in an automated sequence

A.6 Measurement Control T2

 Table A.6
 Measurement Control T2 parameters

Parameter	Values	Comment
Planned Measurement	Off On	For Planned Measurement = <i>On</i> , you can define the number of source positions and microphone positions per source – otherwise the measurements are made from <i>Pos.</i> 1 and forward
No. of Sources (Positions)	1 to 10	Only for Planned Measurement = <i>On</i>
No. of Micr. Pos. per Source	1 to 10	Only for Planned Measurement = <i>On</i> The number can be increased after the first measurements have been saved, but not decreased below the last measurement position
Increment	Source First Mic. Position First Manually	Only for Planned Measurement = <i>On</i> Defines the order in which you want to do your measurements
Max. Decay Time	2 s to 20 s	The decay is based on spectra sampled every 5 ms. An algorithm determines when the decay is finished and then stops the measurement. Under difficult measurement conditions where the automatic stop cannot be found, Max. Decay Time determines when to stop
Automatic Save	Off On	
Excitation	Impulsive Interrupted Noise	
Number of Decays	1 to 100	Parameter only available if Excitation = Interrupted Noise
Trigger Level	0 to 140 dB	Parameter only available if Excitation = <i>Impulsive</i>
Trigger Repeat	Off On	Parameter only available if Excitation = <i>Impulsive</i>
T2 Measurement Mode	Parallel Serial Combined	Parallel measures all bands in the Spectrum simultaneously, Serial measures selected bands, and Combined first measures Parallel and then Serial in an automated sequence

A.7 Signal Recording

Table A.7 Signal Recording parameters*

Parameter	Values	Comment				
Recording Control	Off Automatic	Determines how recording of the measured signal is controlled. Set to <i>Automatic</i> to start the recording when the measurement is started and record throughout the measurement				
Recording Quality	Low Fair Medium High	This setup determines the quality of the recording by adjusting the sampling rate. The amount of space required for the recording will depend on the selected quality: Quality Sampling Upper Memory freq. freq. 16-bit Low 8 kHz 3 kHz 16 KB/s Fair 16 kHz 6 kHz 32 KB/s Medium 24 kHz 10 kHz 48 KB/s				
Peak Recording Level	145 dB 135 dB 125 dB 115 dB 105 dB 95 dB 85 dB 75 dB	High 48 kHz 20 kHz 96 KB/s The recorded signal is stored as a 16-bit wave file, which has a dynamic range of up to 96 dB. When playing back on Type 2250, the dynamic range of the output is approximately 75 dB. When playing back on a PC, it might be even lower. Set Peak Recording Level to fit the signal. The values for Peak Recording Level take the sensitivity of the attached transducer into account. The values shown in the list here are nominal values for a Type 4189 microphone				

Requires license for Signal Recording Option BZ-7226.

A.8 Generator for L1 and L2

 Table A.8
 Generator for L1 and L2 Parameters

Parameter	Values	Comment
Generator Type	Internal External Off (Traffic Noise)	Set to <i>Internal</i> to use the internal noise generator as specified below. Set to <i>External</i> to switch an external generator on/off using a logic signal: On = 3.3 V; Off = 0 V. The generator signal appears at the Output Socket.
		Please note: If Task = Façade and Measure L1 and L2 = Simultaneously, then Generator Type = Off (Traffic Noise) will set the analyzer for averaging the differences L1 – L2 (BZ-7229 only)
Noise Type	Pink White	The type of noise from the internal generator. The bandwidth of the noise will be adjusted to the frequency range from Bottom Frequency to Top Frequency
Level [re. 1 V]	<i>-80.0</i> to <i>0.0 dB</i>	This sets the internal noise generator attenuation in dB, referenced to 1 V. This level stays at the set level irrespective of the frequency range
Escape Time	0 to 60 s	Set the Escape Time to allow the operator to leave the room before the generator is turned on and the measurement starts
Build-up Time	1 to 10 s	Set Build-up Time to allow the sound pressure in the room to settle after the sound source is switched on
Sound Source	Unknown Type 4292 Optimum Type 4295 Optimum Type 4296 Optimum Type 4292 Flat Type 4295 Flat Type 4296 Flat	This setting optimizes the frequency response of the internal generator output to the connected sound source. The 'Flat' setting optimizes the output for a flat power response, and the 'Optimum' setting optimizes the power difference between adjacent 1/1- or 1/3-octave bands while maintaining a 'boost' at low frequencies. Select a type matching your sound source: Type 4292 or 4296 OmniPower Sound Source Type 4295 OmniSource Sound Source Select <i>Unknown</i> if you are using another sound source, or do not want to correct the frequency response

A.9 Generator for T2

Table A.9Generator for T2 Parameters

Parameter	Values	Comment
Generator Type	Internal External	Set to <i>Internal</i> to use the internal noise generator as specified below. Set to <i>External</i> to switch an external generator on/off using a logic signal: On = 3.3 V; Off = 0 V. The generator signal appears at the Output Socket.
		✓ Please note: Set Measurement Control > Excitation = Interrupted Noise to enable the generator parameters
Noise Type	Pink White	The type of noise from the internal generator. The bandwidth of the noise will be adjusted to the frequency range from Bottom Frequency to Top Frequency
Level [re. 1 V]	-80.0 to 0.0 dB	This sets the internal noise generator attenuation in dB, referenced to 1 V. This level stays at the set level irrespective of the frequency range
Escape Time	0 to 60 s	Set the Escape Time to allow the operator to leave the room before the generator is turned on and the measurement starts
Build-up Time	1 to 10 s	Set the Build-up Time to allow the sound pressure in the room to settle after the sound source is switched on
Sound Source Unknown Type 4292 Optimum Type 4295 Optimum Type 4296 Optimum Type 4292 Flat Type 4295 Flat Type 4296 Flat		This setting optimizes the frequency response of the internal generator output to the connected sound source. The 'Flat' setting optimizes the output for a flat power response, and the 'Optimum' setting optimizes the power difference between adjacent 1/1- or 1/3-octave bands, while maintaining a 'boost' at low frequencies. Select a type matching your sound source: Type 4292 or 4296 OmniPower Sound Source Type 4295 OmniSource Sound Source Select <i>Unknown</i> if you are using another sound source, or do not want to correct the frequency response

A.10 Geometry

Table A.10 Geometry Parameters

Parameter	Values	Comment			
Source Room Vol. V1	0.1 to 1000000 m ³	Needed for report in some standards and is a determinant for whether you need to do special low frequency measurements following the ISO 16283 standard, see section 4.6.			
Source Room Floor Area	0.1 to 10000 m ²	Used to determine quality of L1 measurements			
Partition Area S	0.1 to 1000 m ²	Used in calculation of results			
Receiving Room Vol. V2	0.1 to 1000000 m ³	Used in calculation of results and is a determinant for whether you need to do special low frequency measurements following the ISO 16283 standard, see section 4.6.			
Receiving Room Floor Area	0.1 to 10000 m ²	Used to determine quality of L2 measurements			

A.11 Calculations

Table A.11 Calculation Parameters

Parameter	Values	Comment
LF Project	Text entry	Enter the ISO 16283LF project name
Ref. Curve Increment	0.1 dB 1 dB	Set Ref. Curve Increment to 1 dB to shift the reference curve in steps of 1 dB when calculating the result parameters. This is the recommended way of operation for reporting correct result parameters as required by the standard. Set Ref. Curve Increment to 0.1 dB to shift the reference curve in steps of 0.1 dB when calculating the result parameters. This is the recommended way of estimating the uncertainty of the results. Results are displayed with 0.1 dB resolution. Please note: The parameter has no effect for NEN and NEN'06 standards

 Table A.11
 (Cont.)Calculation Parameters

Parameter	Values	Comment
Ensemble Averaging	No Yes	Set to Yes to average each of the position decays into an average decay (called the ensemble average or Room average). The averaged decays of the room can then be displayed in the Decay View. T20 and T30 will be calculated from the Room average. Set to No for no ensemble averaging. There will be no decays available for the room. T20 and T30 will be calculated as averages of the T20@Pos and the T30@Pos resp. for all the positions
Receiving Room Volume	0.1 to 100 000 m ³	Used in calculation of results
Partition Area S	0.1to 1000 m ²	Used in calculation of results
то	0.01 to 10 s	The reference reverberation time – typically 0.5 s, but it may vary with standards
Calculate Using	T30 T20	Use this parameter to specify which of the measured reverberation time values to use in the calculations. If T30 is specified and available, then T30 is used, otherwise, T20 is used
Correct for Background Noise	Yes No	Use this parameter to specify whether L2 should be corrected for the background noise B2 or not
L1: Check 6 dB Rule	Yes No	Select Yes if you want to check whether the sound spectrum in the source room has differences in level greater than 6 dB between adjacent 1/3-octave bands, or not. The check is done according to the method specified in ISO 140-4:1998, 6.2. If a difference greater than 6 dB is found, then the bands are marked with a yellow smiley. When the smiley is tapped, the following explanation appears: L1: >6 dB difference to adjacent band

 Table A.11
 (Cont.)Calculation Parameters

Parameter	Values	Comment
L1, L2: Check Std. Deviation	Yes No	Select <i>Yes</i> if you want to check whether the standard deviation of the averaged sound spectra in the source and receiving rooms is too big, or not. The check is done according to the method specified in ISO 140-14:2004, A.5. If the standard deviation in a frequency band is greater than twice the theoretical expected value, then the band is marked with a yellow smiley. When the smiley is tapped, the following explanation appears: <i>L1 or L2: High Standard Deviation</i>
Receiving Room Floor Area	0.1 to 10000 m ²	Used to determine quality of L2 measurements
Source Room Volume	0.1 to 1000000 m ³	Needed for report in some standards
Source Room Floor Area	0.1 to 10000 m ²	Used to determine quality of L1 measurements
Rubber Hammer	Yes No	NEN and NEN '06 – Impact only
Floor	Wood Stone	NEN and NEN '06 – Impact, Rubber Hammer only
Cr	−10 to 10 dB	NEN and NEN '06 – Façade only
Traffic Type	Road Rail Air Other	NEN and NEN '06 – Façade only
CL	−3 to 20 dB	NEN '06 – Façade only
OILR	-10 to 10 dB	If you are measuring to the ASTM standard, set the dB level for the Outdoor-Indoor Level Reduction parameter here. (Only available if the Façade task is selected)
OITL	-10 to 10 dB	If you are measuring to the ASTM standard, set the dB level for the Outdoor-Indoor Transmission Loss parameter here. (Only available if the Façade task is selected)

Appendix B

Measurement Parameters

B.1 Building Acoustics Standards

B.1.1 Overview

For a complete overview of building acoustic standards see Table B.1 and Table B.2. For an overview of the calculated parameters see Table B.3 and Table B.4.

Table B.1 Building Acoustics Standards – Part 1

		International	Germany	Austria	Italy	UK	England Wales	Sweden
Measu	rement	ISO	DIN	ÖNORM	UNI	BS	BREW	SS
Typ Param		Ŕ Ľn	R L´n	DnT L´nT	Dn Ln	DnT L'nT	DnT	R´ L'n
	Lab	10140-2*	EN20140-3	S 5101	8270–1	EN 20140-3		EN 20140-3
Airborne	Field	140–4 16283–1	52210–1	S 5100–1	8270–4	2750–4	BREW	EN20140-4
	Façade	140–5 16283–3	52210–5	S 5100–3	8270–5	2750–5		EN 20140-5
	Lab	10140–3 [*]	52210–1	S 5101	8270–6	2750–6		EN 20140-6
Impact	Field	140–7 16283–2	52210–1	S 5100–2	8270–4	2750–7		EN 20140-7
RT		3382–2	52212					
Rating	Airborne	717–1	52210–4	S5100–1	8270–7	5821–1, –3	BS EN 717-1	SS- ISO 717–1
Rating	Impact	717–2	52210–4	S5100–2	8270–7	5821–2		SS- ISO 717–2

^{*} Partially fulfilled (does not support correction of the result for the contribution of flanking transmission).

Table B.2Building Acoustics Standards – Part 2

		Switzerland	France	Spain		Netherlands		USA
Measu	rement	Sia	NF-S31	NBE	CTE	NEN	NEN'06	ASTM
Typ Param		DnT L'nT	DnAT LnAT	DnAT LnAT	DnT,A L´nT	llu Ico	DnT,A LnT,A	FTL Ln
	Lab		051	74-040-84/3	CTE 2008			
Airborne	Field	181	054, -057	74-040-84/4	CTE 2008	5077	5077	E336-90
	Façade	181	055, -057	74-040-84/5	CTE 2008	5077	5077	E966–90
	Lab		-052	74-040-84/6	CTE 2008			
Impact	Field	181	056, -057	74-040-84/7	CTE 2008	5077		E1007-11
RT						5077	5077	
Rating	Airborne	181	-057	NBECA-88	CTE 2008	5077	NPR 5079	E413–73 E1332–90
	Impact	181	-057	NBECA-88	CTE 2008	5077		E989

Table B.3 Calculated Parameters – Part 1

Standard	ISO, DIN, ÖNORM, UNI, BS, BREW	SS	Sia(2006)	NF
Basic Standards	ISO 16283 [*] ISO 140 ISO 717	ISO 140 ISO 717	ISO 140 ISO 717	NF S31-05x
Airborne	D Dn DnT R' R	ISO plus:	ISO plus:	D DnT R
	Dw Dw+C Dw+Ctr Dnw Dnw+C Dnw+Ctr	Dw8 DnTw8 R´w8	DnTw+C-Cv	DnATrose DnATroute Rrose
Calculated Parameters	DnTw R'w or Rw +C +Ctr +C ₅₀₋₃₁₅₀ +C ₅₀₋₅₀₀₀ +C ₁₀₀₋₅₀₀₀ +Ctr ₅₀₋₃₁₅₀ +Ctr ₁₀₀₋₅₀₀₀ +Ctr ₅₀₋₅₀₀₀	Rw8		Rroute
Facade	R´45° R´tr,s Dls,2m Dls,2m,n Dls,2m,nT Dtr,2m Dtr2m,n Dtr,2m,nT	See ISO	ISO plus:	DnT45° DnTtr
Calculated Parameters	Dls,2m,w Dls,2m,n,w Dls,2m,nT,w Dls,2m,nT,w+C Dls,2m,nT,w+Ctr Dtr,2m,w Dtr,2m,n,w Dtr,2m,nT,w+C Dtr,2m,nT,w+C +C+Ctr +C50-3150 +C50-5000 +C100-5000 +Ctr50-3150 +Ctr100-5000 +Ctr50-5000		D45°nT Dls,2m,nT,w+C–Cv Dtr,2m,nT,w+C–Cv D45°nT,w+Ctr–Cv	DnATroute45° DnATroute
Impact	L'nT Ln	ISO plus:	See ISO	LnT Ln
Calculated Parameters	L'nw L'nTw or Lnw +Ci +Ci ₅₀₋₂₅₀₀	L'nw8 L'nTw8 Lnw8		LnAT LnA

^{*} ISO 16283: Additional low-frequency measurement procedure for low frequencies in small rooms. The L_{Corner} and L_{LF} results are used for calculating and displaying the final results.

Table B.4 Calculated Parameters – Part 2

Standard	NBE	СТЕ	NEN	NEN'06	ASTM
Basic Standards	ISO 140	ISO 140	NEN 5077	NEN 5077- 2006	ASTM E336, 1007, E966, E1332
Airborne	ISO plus:	ISO plus:	DnT	DnT	NR NNR FTL
Calculated Parameters	DA DnAT RA R´A	DA DnA DnT,A RA R'A	Ilu Ilu;k	DnT,A DnT,A,k	NIC NNIC FSTC
Facade	ISO plus:	ISO plus:	Gi	Gi	OILR OITL
Calculated Parameters	R´A45° Dls,2m,nAT Dtr,2m,nA Dtr,2m,A Dls,2m,A Dls,2m,n,w+C Dls,2m,n,w+Ctr	R´45°A R´45°Aav R´45°Aef R´45°Atr R´A R´Atr D2m,A D2m,Aav D2m,Atr D2m,n,A D2m,n,Aav D2m,n,Aef D2m,n,Atr D1m,n,Atr	G _A G _{A;K}	G _A G _{A;K}	OITC
Impact	ISO plus:	See ISO	LnT		LnT Ln
Calculated Parameters	LnAT LnA		Ico		IIC NISR

Index

Numerics	Partitions	5
2-channel Measurements	Project Template	26
Type 2270 Only53	Standards	6, 93
6 dB Rule	Tasks	
8 dB Rule	Building Acoustics Defined	3
	Building Acoustics Software	17
A	Navigating	17
Adding Image to Current Measurement66	Building Acoustics Software BZ-7228	17
Adding Images to a Measurement	Build-up Time	87, 88
Airborne Sound Insulation	BZ-7228 Building Acoustics Software	17
Airborne Sound Insulation Measurements		
Setup4	С	
Airborne Task	Calculate Using	90
Annotations	Calculated Parameters	
On Measurement	Calculations	
On Project65	Calculations Parameters	89
Annotations and Signal Recording	Calculations Tab	
Annotations Icon	Changing Function	
Automated Sequence	Changing the Number of Sources	
Combine Parallel and Serial Measurements 41	and Microphone Positions	37
Automatic Increment	CL	
Automatic Save	Combine Parallel and Serial Measurements	
Autorange	in an Automated Sequence	41
Auxiliary Parameters	Combined	29
in Reverberation Time Software47	Combined Tasks and Measurements	13
Averaging, Spatial6	Commentary Icon	20
7 Veruging, Spatial	Compliance with Environmental Standards	
В	Controlling	
B2	the Reverberation Time Measurement	33, 43
Background Noise Correction	Controlling 2-channel Measurements	
Background Sound Level Measurement B2 4	(Type 2270 Only)	54
Bandwidth83	Conventions Used in this Manual	1
Bandwidth and Frequency Range	Correct for Background Noise	90
Bottom Frequency	Correction Filters	72
Building Acoustics	Correction for Background Noise	5
Measurement Procedure6	Cr	91
Measurements	Creating a New Project	64
1VICUSUI CITICITUS		

D	Parameters	89
Data		
Reusing 64	Н	
Decay 73	How to Use this Manual	
Decay Graphs in Reverberation Time Software 47	Beginners	2
Decay Tab44, 47	Experienced Users	2
Decay View (T2)		
Detectors	1	
Display Reverberation Time	Icon	
Displaying Results 58	Annotations	20
Displaying the Results	Commentary	20
in Reverberation Time Software 44	LAN	
Dual-channel Measurements (Type 2270 Only) 53	Loudspeaker	21
	PC	
E	Wi-Fi	20
Ensemble Averaging	Images	66
Escape Time87, 88	Impact Sound Level	
Example of a Planned Measurement Task 34	Measurement Setup	
Example of a Serial Measurement	Impact Task	
Example of an Unplanned Measurement 38	Impulsive Excitation Method	
Excitation 85	Impulsive Method	
Exporting 68	Increment	
	Input	
F	for B2	
Façade Sound Insulation3, 11	for L1	81
Measurement Setup	for L2	81
Façade Task	for T2	81
Field Measurements	Selections	27
Field vs. Laboratory Measurements	Selections (Type 2270 only)	53
Floor91	Input Parameters	82
Frequency Range Parameters83	Type 2270 Only	81
Function	Interrupted Noise Method	9, 42
Function Selector	Introduction	
Functions requiring Low-frequency	ISO 140	18
Measurement		
	L	
G	L1	∠
Generator	Check 6 dB Rule	90
for L1 and L2 Parameters	L1 and L2 Simultaneously	
for T2 Parameters 88	(Type 2270 Only)	54
Generator Setup	L1, L2: Check Std. Deviation	
for L1 and L2	L1: No. of Micr. Pos. per Source	
for T2	L1&L2 Function	
Generator Type87, 88	L2: No. of Micr. Pos. per Source	84
Geometry 33	Laboratory Measurements	5

LAN Icon20	0 Field	5
Level (re. 1 V) 87, 88	8 Laboratory	5
Level Measurement Mode29, 84	4 Receiving Room (B2)	8
Level Measurements (L1, L2 and B2)2	5 Receiving Room (L2)	7
Level Trigger Parameters80	Reverberation Time (T2)	8
LF Project89	9 Source Room (L1)	7
Logged Broadband (100 ms) Parameters80	6 Measuring	
Logged Spectrum Parameters 80		58
Loudspeaker Icon2		
L _{Zeq}		
LZF40		17
	New Project	
M	No. of Micr. Pos. per Source	
Manual Selection of Measurement Position 37, 39		
Markers		
Max. Decay Time	· · · · · · · · · · · · · · · · · · ·	
Measure L1 and L283	• • • • • • • • • • • • • • • • • • • •	
Measure L1 and L2 Simultaneously	1 Number of Becays	
(Type 2270 Only)54	4 O	
Measured Standards	OILR	01
ASTM	_	_
BREW	0112	
BS	Ordering information	
CTE	Over view	
DIN		
ISO	C Verview of Banania / Redustres standards	
ISO 16283	-	,
ISO 16283LF	1,00 22,0	55
NBE	_	
NEN	n	
•	Paperclip icon	
NEN'06	Parallel	29
NF	raiailleteis	
ÖNORM 6, 18	Automatic save2	
Sia	Autoralige (Type 2270 Offiy)	
Sia (2006)	DUIIU-UD IIIIE	30
SS	Calculate Ositis	31
UNI	8 CL	32
Measurement	Correct for Background Noise	31
Annotations60	Cr	32
Parameters93	Ensemble Averaging	31
Procedure	Escape Time	30
Measurement Control	Excitation	42
L1, L2 and B2 Parameters8	_ FIUUI	_
Setup – L1, L2 and B2	Generator Type	29
T2 Parameters	Increment	
Measurements		

Input for B2 (Type 2270 Only)	53	Planned vs. Unplanned Measurements	25
Input for L1 (Type 2270 Only)	53	Post-processing	68
Input for L2 (Type 2270 Only)	53	Preset Time	84
Input for T2 (Type 2270 Only)	53	Project Annotations	65
L1 Check N dB Rule		Project Template Bar	18
L1, L2 Check Std. Deviation	32		
L1/L2 - No of Micr. Pos. per Source		Q	
Level (re. 1 V)		Quality Indicators	61
Level Measurement Mode			
LF Project	31	R	
Max Decay Time		Range Setting	92
Measure L1 and L2 (Type 2270 Only)	53	Ready for First Measurement	
No. of Micr. Pos. per Source	42	Dual-channel	
No. of Sources (Positions)	29	Rear Socket	
No. of Sources Positions		Receiv. Room Vol. V2	
Noise Type			
OILR Correction		Receiving Room Floor Area	
OITL Correction			
Planned Measurement		Measurements (B2)	
Preset Time		Measurements (L2) Vol. V2	
Range Setting (Type 2270 Only)		Vol. vz Volume	
Receiv. Room Floor Area			
Recording Quality		Receiving Room Floor Area	
Ref. Curve Increment		Recording Control	
Resolution		Recording Quality Ref. Curve Increment	
Rubber Hammer			
Signal Recording		Reporting Results	08
Sound Source			го
Stone		Displaying Results Link	
T0			
T2 Measurement Mode		Reusing Data from an Existing Project	
T20		Reverberation Time Measurements (T2) Reverberation Time Software	4, 8, 41
T30			47
Traffic Type		Decay Tab	
Trigger Level		Overview Tab	
Trigger Repeat		Spectrum Tab	
Wood		Rubber Hammer	91
Partition Area		S	
Partition Area S			
Partitions	-	Save	
PC Icon		Serial	
Peak Recording Level		Serial Measurements	
Periodic Reports		Example	
Planned Measurement		Setting the Bandwidth and Frequency Range	
Example		Setting the Relevant Standard and Task	27
Planned Measurements			
	-,		

Setting up the Instrument		Status Field	20
(for 2-channel Measurements)	53	System Overview	15
(for Single-channel Measurements)		•	
For T2 Measurements	41	T	
Setup Calculations	31	то	90
Setup for Signal Recording		T2	
Setup Parameters		T2 Measurement Mode	
Signal Recording		T2 Measurements	
Setup		T2 Selector	
Single-channel Measurements		T20	
Smiley Explanation		T20@Pos	
Software, Building Acoustics		T30	
Sound Field Correction		T30@Pos	
Sound Insulation, Airborne		Tab	
Sound Level Measurement L1, L2		Calculations	50
Sound Recording Parameters		Decay	
Sound Source		Decay (T2)	
Source Room		Overview	
Floor Area		Overview (Type 2270)	
Measurements (L1)		Spectrum	
Vol. V1		Spectrum (T2)	
Volume		Spectrum (Type 2270)	
Sources and Microphone Positions		Task	
Spatial Averaging		Task Selector	
Specifications		Tasks in Building Acoustics	
BZ-5503		Things to Remember	
BZ-7226		Top Frequency	
BZ-7228		Traffic Noise	
Type 2250/2270 Platform			
Type 7830		Traffic Type	
Spectrum Graph		Trial Measurement	
Spectrum Graphs in		Trigger Level	
Reverberation Time Software	15	Trigger Repeat	85
Spectrum Parameters		Typical Setup for	
Measurement Display	36	Airborne Sound Insulation Measure	ments4
Result Display		11	
Spectrum Tab		U	
Spectrum Tab (Type 2270)		Unplanned Measurements	
Spectrum Tab in Reverberation Time So		Example	38
Spectrum Table			
•		W	
Spectrum View (L1, L2, L1&L2 and B2) .		What is a Building Acoustics Project?	17
Spectrum View (T2)		Wi-Fi Icon	20
Standard Barameters		Windscreen	
Standard Salaster		Auto Detect	82
Standard Selector		Correction	82
Standards	6		